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Model

Congested shallow water model

Starting from Navier-Stokes with gravity and roof, we get [Gerbeau, Perthame’00]
∂th +∇ · (hu) = 0

∂t (hu) +∇ · (hu ⊗ u) = −h∇ (g (h + B) + p)

h ≤ H
(

h − H
)

(p − Pa) = 0 p ≥ Pa

R

B

h
H

u

Energy conservation For smooth enough solutions, the following energy law holds

∂tE +∇ · G = − (p − Pa) ∂tH + h∂t (gB + Pa)

with the mechanical energy E =
h
2
‖u‖2 + gh

(
B +

h
2

)
+ hPa and the energy flux G
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Model

We have a ”hyperbolic system” which has to verify a constraint
∂th +∇ · (hu) = 0

∂t (hu) +∇ · (hu ⊗ u) = −h∇ (g (h + B) + p)

h ≤ H
(

h − H
)

(p − Pa) = 0 p ≥ Pa

Difficulty: H depends on space and time and interaction between water and roof

R

B

h
H

u

> coupling strategy [Lannes’17]
• Dynamic of the interface?
• Transmission conditions at the interface?

> unified strategy [Bourdarias et al.’12]
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Relaxed model

Pseudo-compressible relaxation approach

Relaxed model
∂thλ +∇ · (hλuλ) = 0

∂t (hλuλ) +∇ · (hλuλ ⊗ uλ) = −hλ∇φλ

pλ = g

(
hλ − H

)
+

λ2 + Pa

with φλ = g (hλ + B) + pλ

Difficulty: relevant for λ� 1

Energy conservation For smooth enough solutions, the following energy law holds

∂tEλ +∇ · Gλ = − (pλ − Pa) ∂tH + hλ∂t (gB + Pa)

with Eλ =
hλ

2
‖uλ‖2 + ghλ

(
B +

hλ

2

)
+ hλPa + g

(
hλ − H

)2
+

λ2 and the energy flux Gλ
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Relaxed model

Relaxed model
∂thλ +∇ · (hλuλ) = 0

∂t (hλuλ) +∇ · (hλuλ ⊗ uλ) = −hλ∇φλ

pλ = g

(
hλ − H

)
+

λ2 + Pa

Hyperbolicity The model is strictly hyperbolic with the eigenvalues

0 and uλ ±

√(
1 +

1hλ≥H

λ2

)
ghλ

⇒ Use a scheme accurate in the limit where potential forces are large in front of the
advection termes
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Mandatory characteristics

Lake at rest preservation: steady solution with vanishing velocity

R
ηλ

B

pλ

R

B

hk − hλ = O (δx )

pk − pλ = O
(

δx
λ2

)

A perturbation on h induces a perturbation on p, induces a perturbation on u, . . .

⇒ Use a well-balanced scheme
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Numerical scheme

Numerical scheme
some references: [Dellacherie et al.’16], [Herbin et al.’14], [Parisot, Vila’16], ...

in cell: ψk =
1
|Vk |

∫
Vk

ψdx

at edge: 2 (ψ)f = ψk + ψkf and 2 [ψ]kf
k = ψkf − ψk

parameters: `k =
|Vk |
|∂Vk |

and µk
f =

|f |
|∂Vk |

Fa
ce

fCell k
hn
k , un

k N
kf
k Cell kf

hn
kf
, un

kf

Step 1: implicit scheme of type non-linear advection-diffusion for the water height

hn+1
k − hn

k +
dt
`k

∑
f∈Fk

((
hn+1un

)
f
· Nkf

k − dt
(

hn+1

`

)
f

[
φn+1

]kf
k

)
µk

f = 0

Step 2: explicit upwind scheme with source term for the velocity

hn+1
k un+1

k − hn
kun

k +
dt
`k

∑
f∈Fk

(
un

k
(
Fn+1

f · Nkf
k

)
+
− un

kf

(
Fn+1

f · Nkf
k

)
−

)
µk

f

= −dt
hn+1

k
`k

∑
f∈Fk

[
φn+1

]kf
k

Nkf
k µk

f
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Numerical scheme

Discrete energy

Under the non-restrictive CFL condition

(∣∣un
f · N

k
f

∣∣+

√
1
2

√∣∣[φn+1]kf
k

∣∣) δn+1
t ≤

min
(

hn+1
k , hn+1

kf

)
hn+1

k + hn+1
kf

min
(

lk , lkf

)
the scheme admits the following energy dissipation law

∂n+1
t Ek +

1
lk

∑
f∈Fk

Gn+1
f µk

f ≤ −
(

pn+1
k − Pn+1

k

)
∂n+1

t Hk + hn
k∂

n+1
t (gBk + Pk )

with the discrete mechanical energy En
k = E

(
hn

k , u
n
k

)
, the discrete flux of energy Gn

k and the

discrete time derivative ∂n+1
t ψ =

ψn+1 − ψn

δn+1
t

Fabien Wahl Modeling and simulation of floating structures 7 / 12



Simulation with fixed buoy

Numerical results with fixed buoy
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Floating object

Buoy dynamics

Adding Newton’s second law of motions

∂th +∇ · (hu) = 0

∂t (hu) +∇ · (hu ⊗ u) = −h∇ (g (h + B) + p)

h ≤ H
(

h − H
)

(p − Pa) = 0 p ≥ Pa

Mζ̈ = −Mg +
∫

Ωx

(p − Pa) dx

with R (x , t) = R0 (x) + ζ (t)

Energy conservation For any smooth solution the following energy balance law holds

∂t

(∫
Ωx

E dx + E
)

=
∫

Ωx

(p − Pa) ∂tBdx +
∫

Ωx

h∂t (gB + Pa) dx

where E =
M
2
ζ̇2 + Mgζ and E =

1
2

h‖u‖2 + gh
(

B +
h
2

)
+ hPa
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Floating object

Discretization of the buoy dynamics equation

ζ̈n+1 = −g +
1
M

∑
k∈T

|k|
(

pn+1
k − Pn+1

k

)
Using a Newmark scheme, the discrete energy law writes

En+1 − En = −
(
α−

1
2

)
M
β − α

2
(
δn+1

t
)2 (

ζ̈n+1 − ζ̈n
)2

+
(
ζn+1 − ζn

)(∑
k∈T

(
|k|
(
α
(

pn+1
k − Pn+1

k

)
− (α− 1)

(
pn

k − Pn
k
))))

with En =
1
2

Mζ̇n2 +
β − α

2

(
δn+1

t
)2

2
Mζ̈n2 + Mgζn.

Energy law for the coupled system Let α = β = 1. Then the scheme admits the following
dissipation law

∂n+1
t

(∑
k∈T

|k|Ek + E

)
≤
∑
k∈T

(
|k|hn

k∂
n+1
t (gBk + Pk )

)
+
∑
k∈T

(
|k|
(

pn+1
k − Pn+1

k

)
∂n+1

t Bk
)
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Simulation of floating object

Numerical result with buoy dynamics
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Conclusion and perspectives

Conclusion

• Derivation of a shallow water type model for partially free surface flow

• Relaxed model introduced

• Numerically approaching the non-constant constraint

Perspectives

• Analysis: convergence when λ→ 0, non-conservative product h∇p

• Validation: confrontation with real life data

• Modeling: more dynamics for buoy, more physical flow, air modeling, submerged object

movie
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