# A hybrid high and low dimensional approach for ocean wave energy converters

Michel Bergmann

INRIA Bordeaux Sud-Ouest - MEMPHIS team Institut de Mathématiques Appliquées de Bordeaux

michel.bergmann@inria.fr
http://www.math.u-bordeaux1.fr/~mbergman/
 https://team.inria.fr/memphis/





#### **MEMPHIS - "Modeling Enablers for Multi-PHysics and InteractionS"**

Angelo Iollo (Pr UB, Team Leader): ROM + compressible

MB (CR Inria): ROM + incompressible + elasticity

Afaf Bouharguane (MC UB): Optimal transportation

Charles-Henri Bruneau (Pr UB): DNS turbulence

+

Several PhDs - Post-docs - Engineers

"We aim at a step change in numerical modeling for science and engineering. We do that by developing two fundamental enablers: reduced-order models and monolithic numerical models on hierarchical Cartesian grids. Thanks to these enablers it will be possible to transfer complexity handling from engineers to computers, providing fast, on-line numerical models for simulation."





Energy systems: windturbines, VALEOL (2 cifre PhDs)

► Fluid-Structure (elastic) interactions



Source: youtube



Wave Energy Converters: ISWEC, W4E

► Fluid-Fluid-Structure (rigid) interactions



Source: W4E



Aeroelastic problems: H2020 AEROGUST + VALEOL

► Fluid-Structure (elastic) interactions



**Biomimetic and bioinspirations: MRGM** 

► Fluid-Structure (deformable) interactions: optimal mass transportation



Source: 3 days larvae: Video from MRGM (P. Babin and A.M Knoll-Gellida)

**Biomimetic and bioinspirations: CorWave LVAD (cifre PhD)** 

► Fluid-Structure (deformable) interactions fish-like swimming



Source: http://www.corwave.com/presentation/therapy-lvad



Flows with particles: CRPP-LOF, LOMA (PhD + projet region)

**Example** ciment, interactions/collisions



Numerical simulation



## **Context and motivations**

 $\hookrightarrow$  Try to solve all these phenomena in a single monolithic framework

# Goal: perform massive parallel numerical simulations for complex flows with interfaces

⇒ requires HPC (*High Performance Computing*)

**Basically, we need:** 

- $\hookrightarrow$  precise schemes,
- $\hookrightarrow$  simple and robust schemes,
- $\hookrightarrow$  fast and easy set up of the simulations,
- $\hookrightarrow$  massive parallel computations.

 $\Rightarrow$  Engineer time  $\rightarrow$  CPU time "The simplest for the user"





## Outline

#### Modeling and numerical methods

 $\hookrightarrow$  Cartesian/Hierarchical (octree) mesh, penalization, level-set

 $\hookrightarrow$  Research code for applications, //  $10^4$  CPUs

#### ► Wave Energy Converters

 $\hookrightarrow$  Rigid body (Wave For Energy (W4E)/Optimad)

 $\hookrightarrow$  Elastic body (Pelamis like WEC)





► Modeling of open flows around deformable bodies



Navier-Stokes equations in domain  $\Omega_f$ :

$$\begin{split} \rho\left(\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u}\cdot\boldsymbol{\nabla})\boldsymbol{u}\right) &= -\boldsymbol{\nabla}p + \boldsymbol{\nabla}\cdot 2\mu D(\boldsymbol{u}) + \rho \boldsymbol{g} \text{ in } \Omega_{\boldsymbol{f}}, \\ \boldsymbol{\nabla}\cdot\boldsymbol{u} &= 0 \text{ in } \Omega_{\boldsymbol{f}}, \\ \boldsymbol{u}(\boldsymbol{x},\,t) &= \widehat{\boldsymbol{u}}(\boldsymbol{x},\,t) \text{ on } \Gamma_{\boldsymbol{s}}. \\ &+ \text{ initial conditions} + \text{ boundary conditions on exter-} \end{split}$$

+ initial conditions + boundary conditions on external boundary  $\partial \Omega$ .

 $\hookrightarrow$  How to manage numerically the unsteady boundary conditions on  $\Gamma_s$ ?  $\hookrightarrow$  What kind of boundary conditions on external  $\partial\Omega$  for open flows?



Unsteady mesh adaptation to accurately track interfaces

Cécile Dobrzynski (IMB)

+ Very efficient: precision

- + Can be quite fast: only fine mesh near bodies
  - Not an easy set up: mesh generation
  - Can also be very costly: mesh adaptation
  - Complicated numerical schemes (FEM)





#### Embedded interfaces

+ Simple grids (Cartesian/octrees) ⇒ simple numerical schemes (Finite Volumes)
 + Easy parallel computing: simple domain decomposition
 - Precision near interfaces (boundary layers)

 $\hookrightarrow$  Indeed, the bodies interfaces do not match the cartesian fluid mesh  $\hookrightarrow$  How to capture the interface? Two ways:

 $\triangleright$  Eulerian: capture interface with scalar function  $\phi(\boldsymbol{x}, t)$  transported with  $\widehat{\boldsymbol{u}}$ 

$$\frac{\partial \phi}{\partial t} + \widehat{\boldsymbol{u}} \cdot \boldsymbol{\nabla} \phi = 0. \tag{1}$$

 $\hookrightarrow$  Large deformations  $\Rightarrow$  interfaces fluid/fluid

Lagrangian: markers on boundary

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \widehat{\boldsymbol{u}}$$



 $\hookrightarrow$  Small deformations  $\Rightarrow$  interfaces fluid/structure



(2)

► Embedded interfaces Cut cell method



Yee, Mittal, Udaykumar, Shyy 1999

+ Efficient: nice conservations

- For us, too difficult to manage in 3D!!





**Embedded interfaces with penalization model:** Darcy-Brinkman porous model

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} = -\nabla p + \frac{1}{\rho} \boldsymbol{\nabla} \cdot 2\mu D(\boldsymbol{u}) + \boldsymbol{g} + \lambda \chi(\widehat{\boldsymbol{u}} - \boldsymbol{u}) \quad \text{in} \quad \Omega,$$
$$\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0 \quad \text{in} \quad \Omega.$$

 $\hookrightarrow$  Usually  $\widehat{u}$  is the body velocity: imposed on nodes inside the body (where  $\chi = 1$ )

 $\hookrightarrow \chi = H(\phi)$  where *H* is Heaviside function and  $\phi$  the level set function  $(\phi(\boldsymbol{x}) > 0 \text{ if } \boldsymbol{x} \in \Omega, \phi(\boldsymbol{x}) = 0, \text{ if } \boldsymbol{x} \in \partial\Omega, \phi(\boldsymbol{x}) < 0 \text{ else if}).$ 

 $\hookrightarrow \lambda \gg 1$  penalization factor  $\rightarrow$  Solution of penalized system tends to solution classical system *w.r.t.*  $\varepsilon = 1/\lambda \rightarrow 0$ .

+ Very Simple: no need of meshes that fit the body geometries nor cut cell)
+ No need to impose pressure BCs on body boundaries (projection method)
- Precision: only 1<sup>st</sup> order in space (û = u is not imposed exactly on the boundary)





► Improvement of penalization model: discrete ghost fluid like method

 $\hookrightarrow \quad \widehat{\boldsymbol{u}}^n = \boldsymbol{u}_{GC} = 2\,\boldsymbol{u}_{BI} - \boldsymbol{u}_{IP}$ 

IP coordinates determined by level set, velocity  $u_{IP}$  determined by bilinear interpolation



Ghias, Mittal, Dong 2007

+ Very efficient 2<sup>nd</sup> order in space
 + Easy to implement!! (small linear systems to solve, see next slides)





### Modeling and numerical methods | Fluid/Fluid

► Flow modeling with interface fluid/fluid

$$\rho(\psi_f) \left( \frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{u} \right) = -\boldsymbol{\nabla} p + \boldsymbol{\nabla} \cdot 2\mu(\psi_f) D(\boldsymbol{u}) + \rho(\psi_f) \boldsymbol{g} \operatorname{dans} \Omega_f^+ \operatorname{et} \Omega_f^-,$$
$$\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0 \operatorname{in} \Omega_f^+ \operatorname{et} \Omega_f^-,$$



Mathématiques de Bordeaux

$$[oldsymbol{u}(oldsymbol{x},\,t)] = 0 \ {
m across} \ \Gamma_f,$$
  
 $[-pI + 2\mu D(oldsymbol{u})] \cdot oldsymbol{n} = \sigma \kappa oldsymbol{n} \ {
m across} \ \Gamma_f,$ 

$$\rho(\psi_f) = \rho^+ + H(\psi_f)(\rho^- - \rho^+),$$
$$\mu(\psi_f) = \mu^+ + H(\psi_f)(\mu^- - \mu^+).$$

Transport of the level set function :

$$rac{\partial \psi_f}{\partial t} + oldsymbol{u} \cdot oldsymbol{
abla} \psi_f = 0 ext{ dans } \Omega.$$





## **Modeling and numerical methods | Fluid/Fluid**

► CSF: the surface tension is considered as being an extra volume force

 $\hookrightarrow$  The jump  $[-pI + 2\mu D(\boldsymbol{u})] \cdot \boldsymbol{n} = \sigma \kappa \boldsymbol{n}$  across  $\Gamma_f$ , becomes

$$\rho(\psi_f) \left( \frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{u} \right) = -\boldsymbol{\nabla} p + \boldsymbol{\nabla} \cdot 2\mu(\psi_f) D(\boldsymbol{u}) + \sigma \kappa \delta(\psi_f) \boldsymbol{n} + \rho(\psi_f) \boldsymbol{g} \text{ dans } \Omega_f.$$

 $\Rightarrow$  regularization of the Dirac over  $\varepsilon$ 

$$\delta^{\epsilon}(\psi_f) = \frac{\mathrm{d}H^{\epsilon}(\psi_f)}{\mathrm{d}\psi_f} = \begin{cases} 0 & \text{si } |\psi_f| > \epsilon, \\\\ \frac{1}{2\epsilon} \left(1 + \cos(\frac{\pi\psi_f}{\epsilon})\right) & \text{si } |\psi_f| \le \epsilon. \end{cases}$$

 $\hookrightarrow \rho \text{ and } \mu$  are also regularized

#### Advantages: easy to implement

**Drawbacks:** unphysical velocities can appear near interface + new stability condition **Under consideration:** the sharp method developed by M. Cisternino and L. Weynans



#### ► Octree grids







► Octree grids

nstitut

Mathématiques de B o r d e a u x

d e



With Z-ordering (alternative: Hilbert ordering)



#### **Numerical schemes**

#### ► In space:

- $\hookrightarrow$  Hierarchical grids (quadtrees/octrees)
- $\hookrightarrow$  2nd order finite volumes

 $\hookrightarrow$  Penalization and IPC coupled in the Chorin temporal scheme

#### ► In time: Chorin Temam scheme

 $\hookrightarrow$  2nd order Semi-Lagrangian scheme, implicit viscous term

 $\hookrightarrow$  Implicit penalization (large penalty term)

$$\frac{\boldsymbol{u}_{a}^{(n+1)} - \boldsymbol{u}_{d}^{(n)}}{\Delta t} = -\nabla p_{a}^{(n+1)} + \frac{1}{Re} \Delta \boldsymbol{u}_{a}^{(n+1)} + \boldsymbol{F} + \lambda \chi^{(n+1)} (\widehat{\boldsymbol{u}}_{a}^{(n+1)} - \boldsymbol{u}_{a}^{(n+1)})$$
$$\boldsymbol{\nabla} \cdot \boldsymbol{u}_{a}^{(n+1)} = 0$$





#### **Numerical schemes**

 $\hookrightarrow$  Step 1: Prediction starting from a pressure guess q

$$\frac{\boldsymbol{u}_{a}^{*}-\boldsymbol{u}_{d}^{(n)}}{\Delta t}=-\nabla p_{d}^{(n)}+\frac{1}{Re}\Delta \boldsymbol{u}_{a}^{*}+\lambda \chi^{(n)}(\overline{\boldsymbol{u}}_{a}^{(n)}-\boldsymbol{u}_{a}^{*})+\boldsymbol{F}$$

Incremental method  $q = p^n \longrightarrow$  "accurate" boundary conditions

$$oldsymbol{u}^{**} = oldsymbol{u}_a^* + \Delta t \, (\nabla p)_{cc}$$
 cc : cell center (stencil  $2\Delta x$ )  
 $oldsymbol{U}^{**} = \gamma(oldsymbol{u}^{**}), \quad \gamma$  interpolation function  
 $oldsymbol{U}^* = oldsymbol{U}^{**} - \Delta t \, (\nabla p)_{fc}$  fc : face center (stencil  $\Delta x$ )

 $\hookrightarrow$  subscript *a* denotes arrival points, *i.e.* on the grid (cell centered)

 $\hookrightarrow$  subscript d denotes departure points, not on the grids  $\Rightarrow$  obtained by interpolations





#### **Numerical schemes**

 $\hookrightarrow$  Step 2: Correction: projection in divergence free space

Poisson equation

$$\Delta \phi^{(n+1)} = \nabla \cdot \boldsymbol{U}^*$$

 $\hookrightarrow$  Not necessary to impose boundary conditions on interface (continuous pressure)

⊳ Correction

$$\widetilde{\boldsymbol{u}}^{(n+1)} = \boldsymbol{u}^* - (\nabla \phi)_{cc}^{(n+1)}$$
$$\widetilde{\boldsymbol{U}}^{(n+1)} = \boldsymbol{U}^* - (\nabla \phi)_{fc}^{(n+1)}$$
$$\widetilde{p}^{(n+1)} = q + \frac{\phi^{(n+1)}}{\Delta t} - \frac{\Delta t}{2 Re} (\Delta \phi)_{cc}^{(n+1)}$$

 $\hookrightarrow$  face center gradients are obtained using *Diamants (DDFV-like) method*.





#### **Numerical schemes**

 $\hookrightarrow$  Step 3: Computation of the body motion

Newton's laws

$$\boldsymbol{u}^{(n+1)} = f(\widetilde{\boldsymbol{u}}^{(n+1)}, \, \widetilde{p}^{(n+1)})$$

▷ Transport of the distance function  $\psi$ : 2nd order semi-Lagrangian with 3rd order interpolations  $\Rightarrow \psi$  is a priori not a distance function anymore

 $\triangleright$  Redistanciation to recover  $|\nabla \psi| = 1$ : sub cell fix with HJ WENO

$$\frac{\partial \psi}{\partial \tau} + sign(\widetilde{\psi}^{(n+1)})(|\nabla \psi| - 1) = 0 \text{ with } \psi(\boldsymbol{x}, \tau = 0) = \widetilde{\psi}^{(n+1)}.$$

 $\hookrightarrow$  After convergence we obtain  $\psi^{(n+1)}$  and thus  $\chi^{(n+1)} = H(\psi^{(n+1)})$ .

 $\hookrightarrow$  Step 4: IPC, correction for 2nd order penalization

$$\frac{\boldsymbol{u}^{(n+1)} - \widetilde{\boldsymbol{u}}^{(n+1)}}{\Delta t} = \lambda \chi^{(n+1)} (\widehat{\boldsymbol{u}}^{(n+1)} - \boldsymbol{u}^{(n+1)})$$

 $\Rightarrow$  The whole system has to be closed with appropriate external boundary conditions!!  $\Rightarrow$  For next examples, simple periodic boundary conditions...



## **Modeling and numerical methods**

Applications: swimmers, wind turbines, ocean waves/boat interactions...

#### Developments and Experiments using local clusters PLAFRIM (1 and 2) and AVAKAS

► Large scale 3D problems: more than one billions dofs

 $\hookrightarrow$  Required parallel code: Very easy with cartesian mesh!!

 $\Rightarrow$  One solution: Message Passing Interface (MPI)

 $\Rightarrow$  Other solution with higher abstraction level (more simple):

Portable, Extensible Toolkit for Scientific Computation (PETSc)

http://www.mcs.anl.gov/petsc/petsc-as/

 $\hookrightarrow$  PETSc gives:

- $\Rightarrow$  structures for parallelism (DA *Distributed Arrays* to manage cartesian meshes)
- $\Rightarrow$  libraries to solve linear systems in parallel (KSP Krylov Subspace methods)

F-GMRES, preconditioner ASM with ILU on each subdomain



## **Wave Energy Converters | applications**

 $\hookrightarrow$  We have to develop methods adapted to the applications!

#### Ocean wave energy: (i) water snakes like pelamis and (ii) iswec









► Snake model: http://www.pelamiswave.com

- Interfaces fluid/fluid/body
- ► Elastic structure + interfaces F/F/S: water snake





► Elastic beam model: water snake

 $\Rightarrow$  linear elasticity

$$M^{z} = E I \left(\frac{\partial \phi}{\partial s} - \kappa\right) + \mu I \frac{\partial \dot{\phi}}{\partial s},$$



► Solution: le system is fully described by  $\phi(s, t)$  and (x(s = 0, t), y(s = 0, t))



$$\hookrightarrow \ddot{\boldsymbol{z}} = G(\boldsymbol{z}, \, \dot{\boldsymbol{z}}, \, t)$$
 avec  $\boldsymbol{z} = (x_1, \, y_1, \, \phi_1, \dots, \phi_N)^T$ 

(can be expensive for large N!)

y

- ► Numerical method to couple flow and structure solvers: implicit "strong" coupling
- $\hookrightarrow$  Stability: implicit forces have to be used to move the structure
- $\hookrightarrow$  Complicated  $\Rightarrow$  iterative algorithm
  - 1. At time  $t^n$  the interface is captured with  $\phi^n$ . We impose curvature  $\kappa^n$  for structure. Let k = 0 and the forces be  $\widetilde{W}_k^n = W^n$ .
  - 2. Structure code: from  $\phi^n$ , compute  $\widetilde{\phi}_k^{n+1}$  with  $\kappa^n$  and  $\widetilde{W}_k^n$ ,
  - 3. Fluid code: from  $\phi^n$  and  $\widetilde{\phi}_k^{n+1}$ , computed forces  $\widetilde{W}_{k+1}^n$ ,
  - 4. If  $e = \|\widetilde{W}_{k+1}^n \widetilde{W}_k^n\|_{\infty} < \epsilon$ , then n = n + 1 and go back to 1. Else if, k = k + 1 and go back to 2 to perform a new sub-iteration.

Remark: Usually, we use 3-4 sub-iterations





► Numerical simulations of the water snake

3D Example with 10 cylinders, total length 1m Mesh  $1200 \times 300 \times 300 \approx 400\,000\,000$  unknows, 256 CPUs, 10 hours





► Another wave energy system: ISWEC (Inertial Sea Wave Energy Converter)

 $\hookrightarrow$  project SeaCure







► Another wave energy system: ISWEC (Inertial Sea Wave Energy Converter)

 $\hookrightarrow$  project SeaCure





► Another wave energy system: ISWEC (Inertial Sea Wave Energy Converter)

 $\hookrightarrow$  project SeaCure



Another wave energy system: ISWEC (Inertial Sea Wave Energy Converter)

 $\hookrightarrow$  project SeaCure



Power extracted by the gyroscope





- ► Boundary conditions are not physical (periodic)
- ► Not real ocean waves (dam break)
- ► Large domains are needed to impose more physical BCs
- ► Each simulations is costly
- ► Only few simulations can be done
- ► Coupling with low fidelity model (less accurate but faster!)







Problem with outflow boundary conditions: we have to impose artificial BCs!  $\Rightarrow$  Far away, large domain!







Look for BCs on a Proper Orthogonal Decomposition (POD) subspace computed offline

 $\Rightarrow$  how to compute a robust POD subspace if input parameters change?

athématiques de ordeaux



Proper Orthogonal Decomposition (POD), Lumley (1967)

 $\triangleright$  Look for the flow realization  $\Phi(X)$  that is "the closest" in an average sense to realizations U(X).

 $(\boldsymbol{X} = (\boldsymbol{x}, t) \in \mathcal{D} = \Omega \times \mathbb{R}^+)$ 

 $\triangleright \Phi(X)$  solution of problem:

nstitut de athématiquesde ordeaux

$$\max_{\boldsymbol{\Phi}} \langle |(\boldsymbol{U}, \boldsymbol{\Phi})|^2 \rangle, \quad \|\boldsymbol{\Phi}\|^2 = 1.$$

▷ Optimal convergence in  $L^2$  norm de  $\Phi(X)$ ⇒ Dynamical reduction possible.



Lumley J.L. (1967) : The structure of inhomogeneous turbulence. *Atmospheric Turbulence and Wave Propagation*, ed. A.M. Yaglom & V.I. Tatarski, pp. 166-178.



Equivalent with Fredholm equation:

$$\int_{\mathcal{D}} R_{ij}(\boldsymbol{X}, \boldsymbol{X'}) \Phi_n^{(j)}(\boldsymbol{X'}) d\boldsymbol{X'} = \lambda_n \Phi_n^{(i)}(\boldsymbol{X}) \qquad n = 1, .., N_s$$
$$\hookrightarrow R(\boldsymbol{X}, \boldsymbol{X'}) : \text{Space-time correlation tensor}$$

Snapshots method, Sirovich (1987) :

$$\int_T C(t,t')a_n(t')\,dt' = \lambda_n a_n(t)$$

 $\hookrightarrow C(t,t')$  : Temporal correlations

 $\triangleright$  POD basis  $\Phi(\mathbf{X})$  for one set of input parameters space:

 $\boldsymbol{U}(\boldsymbol{x},t) = \sum_{n=1}^{N_s} a_n(t) \boldsymbol{\Phi}_n(\boldsymbol{x}).$ 

n=1



<sup>o</sup> Strovich L. (1987): Turbulence and the dynamics of coherent structures. Part 1,2,3 Quarterly of Applied COC Mathematics, XLV N<sup>o</sup> 3, pp. 561–571.

► How to perform an efficient sampling of input parameter space?

- Uniform Sampling in a cartesian way? Problems: not optimal
   → distance in parameter space ≠ "distance" in solution space
- Leave one out (quadtree refinements)? Problems: lot of sampling points
- Stochastic way? Problem: no guarantees
- $\hookrightarrow$  Need something else...
- ► Iterative sampling based on an error criterion
  - Iterative method to improve the POD basis
  - The error is the mathematical projection error computed using the current POD basis
  - "Adaptive mesh refinement" using Delaunay triangulation (dual of voronoi tesselation)





An initial Sampling with non-unique Delaunay Triangulation (4 points) Pitching airfoil:  $F = [30, 70] \mapsto \overline{F} = [0, 1]$  and  $A = [1.607, 3.615] \mapsto \overline{A} = [0, 1]$ 







(i) Compute the POD basis (80 snapshots), (ii) compute projection error onto 10 POD modes, (iii) select the triangle with maximal average error







Next Sampling point is the center of mass of that triangle  $A_{new} = 3.21$  and  $F_{new} = 54.3$ 







Delaunay sampling with dual Voronoi tesselation (Voronoi in blue)







Compute new POD basis (5 points, *i.e.* 100 snapshots) and compute the new point  $A_{new} = 3.05$  and  $F_{new} = 37.1$ 





Compute new POD basis (6 points, *i.e.* 120 snapshots) and compute the new point  $A_{new} = 2.22$  and  $F_{new} = 52.0$ 







Compute new POD basis (7 points, *i.e.* 140 snapshots) and compute the new point  $A_{new} = 2.82$  and  $F_{new} = 65.4$ 





 $\hookrightarrow$  Better than 9 points uniform sampling!



► How to chose domain  $\Omega_{CFD}$ ?

 $\hookrightarrow$  An error indicator based on leave one out strategy "sensitivity of the POD basis functions"

- We have M sampling points with  $N_s^{(k)}$  snapshots for the  $k^{th}$  sampling point
- Alternatively, for each sampling point k:
  - We remove the  $N_s^{(k)}$  snapshots and build the POD basis
  - We compute the projection error ( $N_s^{(k)}$  onto POD basis)
- We perform an average error over the  ${\cal M}$  sampling points
- We chose a given threshold for the error that is acceptable for POD representation
  - Maximal error is near the obstacle and "far field" ok
- We chose  $\Omega_{CFD}$  the minimal cartesian box surrounding this error
- We perform high fidelity simulation in that domain.





► Galerkin free reduced order model

$$\boldsymbol{u}(\boldsymbol{x}, t) \approx \widetilde{\boldsymbol{u}}(\boldsymbol{x}, t) = \boldsymbol{u}_g(\boldsymbol{x}, t) + \sum_{i=1}^{N_R} \hat{u}_i(t) \boldsymbol{\Phi}_i(\boldsymbol{x})$$

$$p(\boldsymbol{x}, t) \approx \widetilde{p}(\boldsymbol{x}, t) = p_g(\boldsymbol{x}, t) \sum_{i=1}^{N_R} \hat{p}_i(t) \Psi_i(\boldsymbol{x})$$

The functions  $u_g$  and  $p_g$  can snapshots average, zeros, or any desired functions (like gusts)

- $\hookrightarrow \{\hat{u}\}_{i=1}^{N_R}$  are obtained minimizing  $\|\boldsymbol{u}^* \widetilde{\boldsymbol{u}}\|_2$  in overlapping domain  $\Omega_o$
- $\hookrightarrow \{\hat{p}\}_{i=1}^{N_R}$  are obtained minimizing  $\|p^* \widetilde{p}\|_2$  in overlapping domain  $\Omega_o$





- ► Example: We are interested in gust effect on 2D airfoil
- $\hookrightarrow$  NACA0012 airfoil at Re = 1000,  $\alpha = 5^{\circ}$  and chord c = 1
- $\hookrightarrow$  Interaction with a vortex
- $\hookrightarrow$  The flow without gust is steady
- $\hookrightarrow$  The computed lift coefficient  $C_L = 0.25$  agrees well with the reference results
- $\hookrightarrow$  The unsteady vortex shedding at Re=1000 appears for  $\alpha\geq8^\circ$
- $\hookrightarrow$  The domain is  $[-8c, 8c] \times [-4c, 4c]$ . Mesh:  $1600 \times 800 \rightarrow 100$  points along the chord
- $\hookrightarrow$  The simulation is performed for  $0 \leq t \leq 6.5$





► Example: We are interested in gust effect on 2D airfoil





- ► Example: We are interested in gust effect on 2D airfoil
- $\hookrightarrow$  The gust is modeled as a vortex (Rotational core + quickly decaying external region)



$$q = U_0 r/R$$
 if  $r < R$   
 $q = U_0 R^2/r^2$  if  $r \ge R$ 

r: distance from vortex center
R: vortex characteristic radius
U<sub>0</sub>: vortex characteristic velocity
q: magnitude of the vortex induced velocity







▶ Definition of the gust functions  $u_g$  and  $p_g$ : analytical transport → reduced CPU costs





► Uniform Sampling for robust basis functions over the input parameter subspace

 $\hookrightarrow$  Size and intensity of the vortex



► Size of the DNS domain: leave one out in the input parameter space











► Example: numerical zoom

 $\hookrightarrow$  This can be done iteratively

One sampling point Leave one out based on snapshots clustering (K-means)



Numerical zoom of flow around an APX wind turbine blade (Cantilever beam) Low Reynolds number (Re=1000), No twist, no rotation





### Softwave

#### A versatil numerical code: NaSCar (Navier-Stokes Cartesien)

#### Librairies for obstacles

- $\hookrightarrow$  Importation and meshing of geometries
- $\hookrightarrow$  3D synthetic body generation using B-splines (fishes)

#### Librairies for fluid/structure interactions

- $\hookrightarrow$  Computation of hydrodynamic effects (forces and torques)
- $\hookrightarrow$  One-way: imposed deformation and computation of the displacement using Newtons laws
- $\hookrightarrow$  Two-way: strong implicit coupling, elastic beam model

#### Librairies to track interfaces

- $\hookrightarrow$  Level set generation from given obstacle
- $\hookrightarrow$  Level set transport (WENO5 and RK3 TVD)
- $\hookrightarrow$  Reinitialization (Godunov type method for upwinding)
- $\hookrightarrow$  Contour selection for mass conservation

#### Librairies for Navier-Stokes on Cartesian mesh

- $\hookrightarrow$  Projection method: 2nd order Chorin-Temam approach
- $\hookrightarrow$  Volume penalisation

athématiques de ordeaux

- $\hookrightarrow$  Immersed Boundaries
- $\hookrightarrow$  Image Point Correction
- $^{\sim} \rightarrow$  Bi-fluid with surface tension: CSF and GFM methos
- $\hookrightarrow$  turbulence model: LES Smagorinsky-Lilly



## Conclusions

#### ► Improvement of the code

 $\hookrightarrow$  Overset Chimera meshes (F. Tesser PhD)







## Conclusions

#### Improvement of the code

- $\hookrightarrow$  Overset Chimera meshes (F. Tesser PhD)
- $\hookrightarrow$  Accurate and robust schemes (2nd order AND conservative)
- $\hookrightarrow$  Coupling with other "reduced order models" for BCs (shallow water?)

#### ► Lot of applications: real data!

- $\hookrightarrow$  Zebrafish larvae (MRGM)
- $\hookrightarrow$  Flows with many particles (LOMA, CRPP-LOF)
- $\hookrightarrow$  Wind turbines (VALEOL, Cifre PhD)
- $\hookrightarrow$  Pelamis (to test two-way FSI)
- $\hookrightarrow$  ISWEC (W4E)
- $\hookrightarrow$  CorWave (Cifre PhD)
- $\hookrightarrow \text{And more} \ ...$



