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→ Ocean/river energy extraction process

→ Starting project for Chilean

→ example of application : “Canal Chacao”

→ Numerical model : prediction of turbulence patterns

→ Existing version for wind turbines “SDM-windpos” 

            Can we apply it to ocean flows ?  
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Pressure gradient term [reduced pressure]

“Drifter” term – Come back to the mean velocity

“Stochastic diffusion” term – Driven by pseudo dissipation

Brownian motion
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- Lagrangian model based on PDF equation

→ Incompressible flow 

Mean velocity
In the particle cell

 Eulerian mesh grid 
N = Number of particle /cell keeps constant  

< U > = mean(U
n
), for n in [1,N]

U
n
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Brownian motion

IP model
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II. Benchmarks 

II.2 Effects of the bathymetry 

+ Benchmark on upstream flow (without turbines)

    Almeida et al. 1993

Numerical method : 

- Reflexion of particles according to the local inclination

- On the ground, set the variances to get a log law

- Conservation of the covariance after/before the reflexion 

?????

U0 = 2.147 m/s

Re = 6.104
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II.2 Effects of the bathymetry 

+ Restart the computation including the hill 
U/U

0
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II.2 Effects of the bathymetry 

+ Mean velocity field
U/U

0

Field distribution of streamline

Exp. Num.X [mm]
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II.2 Effects of the bathymetry 

+ Mean velocity profiles
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max
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II.2 Effects of the bathymetry 

+ Velocity fluctuations 

+ Velocity correlations

U
0
 = 2.147 m/s



 

II. Benchmarks 

II.3 Turbulence generated downstream turbines 

Myers et al. 2010

U
∞ Dh

p=variable

L

x

z

L/2

Turbulent length scales (x,z) : 
X : 4D,6D,10D → high, medium, and low deficit 
Z : Deficit over ~D with intermediate region over ~1/10 D

Ct = variable
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Lx = ΔX
Cell length

First Model

Dependence to time step : 

- High DT → Better close to the disk
- Low DT  → Better far from the disk 

    Difficult to configurate
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Model including particle volume 

Total Controle volume

Volume of 1 particle

U
n U

n

*

X
disque

Vt  = Volume of particles that cross the disk    
         between t

n
 and t

n+1

Vp = Volume of one particle 
         Volume of cell / Number of cell per cell
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Model including particle volume 

Repartition of Velocity deficit : no so good !
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Model including particle volume 

Significant under-estimation of TKE
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New Model (using calibration from exp. data) 

Model including particle volume

New Model

Velocity deficit on the centerline
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New Model (using calibration from exp. data) 

TKE  

Model including particle volume

New Model!!
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New Model (using calibration from exp. data) 
3D                     5D                 7D                     9D  

Model including 
particle volume

New Model 
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III. Conclusion 

 

 

 

- Boundary layers quite well represented 
  → Both mean velocity field and turbulence
  → However the sub-viscous layer is not included

- Effect of bathymetry 
   → Mean fields are well described 
   → Some efforts are needed close to the hill

- Porous disk 
   → Partially validated 
   → Velocity deficit is well described 
   → TKE is well predicted far from the interface 
   → Covariances have good tendency but lack of accuracy 

- Computational times quite reasonable



III. Perspectives 

 

 

 

- Improve the porous disks 
   → Collaboration with Cristian Escauriaza

- Improve the boundary layer 
   → Including the sub-viscous layer

-  Propose more complex model of turbines including rotation 
    → Collaboration with Hydrotube (Bordeaux)

- Parallelization of the code SDM to reduce computational times
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