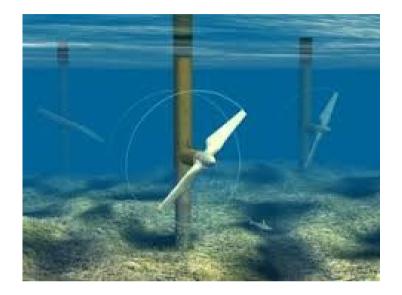
Vers une première validation du model SDM pour écoulements marins

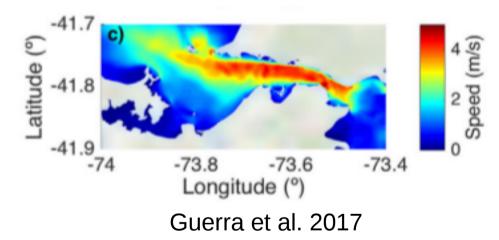
On the first validations of the SDM model for tidal flows

Cyril Mokrani, Mireille Bossy, Antoine Rousseau

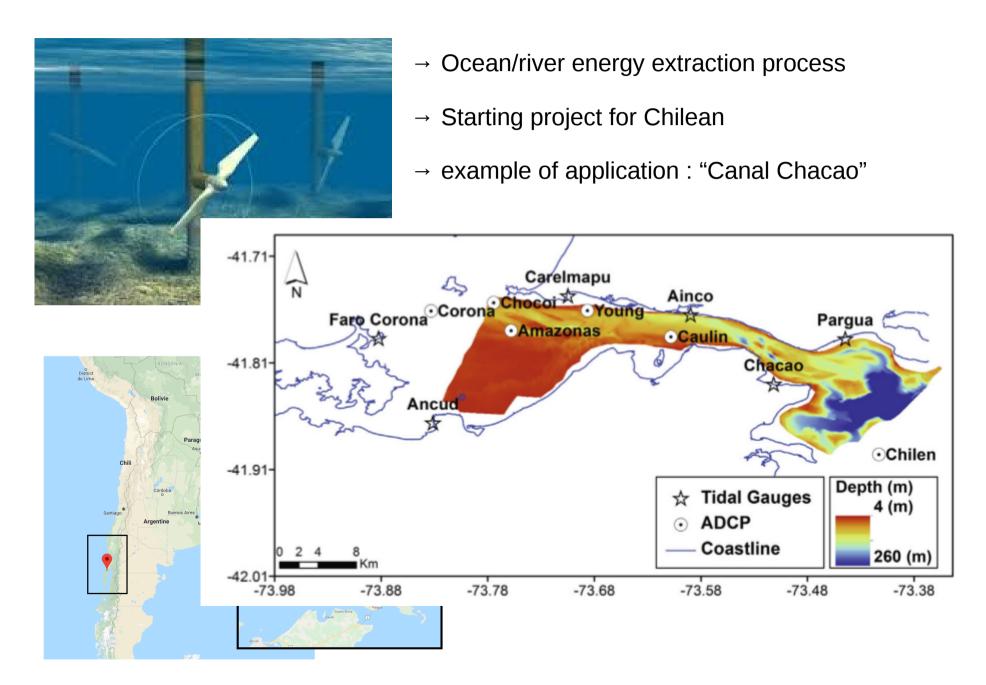
CONTEXT



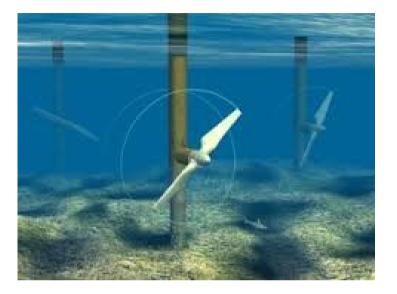
- → Ocean/river energy extraction process
- → Starting project for Chilean
- → Example of application : "Canal Chacao"



CONTEXT



CONTEXT



- → Ocean/river energy extraction process
- → Starting project for Chilean
- → example of application : "Canal Chacao"
- → Numerical model : prediction of turbulence patterns
- → Existing version for wind turbines "SDM-windpos"

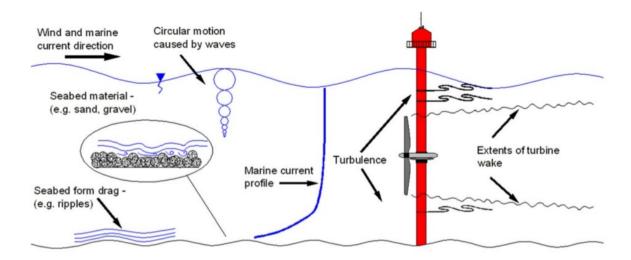
Can we apply it to ocean flows ?

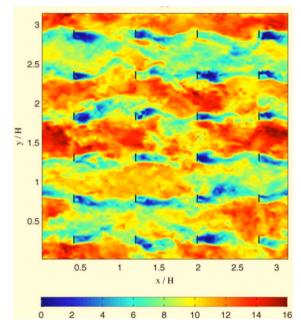
OBJECTIVES

 \rightarrow Describe fluid dynamics upstream the turbine

 \rightarrow Model the turbine effects on the fluids dynamics

 \rightarrow Assess the numerical accuracy and performances





OBJECTIVES

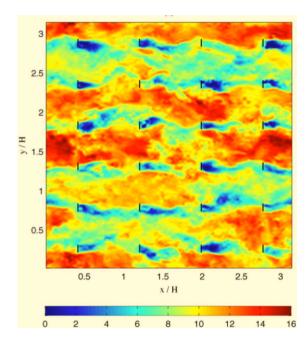
 \rightarrow Describe fluid dynamics upstream the turbine

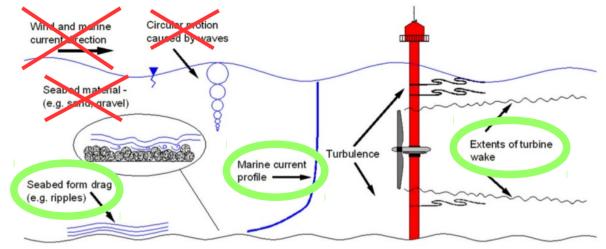
OB1. Boundary layers OB2. Effect of bathymetry

 \rightarrow Model the turbine effects on the fluids dynamics

OB3. Implementation of "simplified" turbine models

 \rightarrow Assess the numerical accuracy and performances





CONTENTS

I. Numerical methods

- II. Benchmarks of SDM-oceapos
 - II.1 Description of the boundary layers
 - II.2 Bathymetry effects
 - II.3 Turbulence generated downstream turbines
- III. Conclusions and future works

- Lagrangian model based on PDF equation
- \rightarrow Incompressible flow

$$dX_t = \mathcal{U}_t dt \qquad \mathcal{U}_t = (\mathbf{u}_t^{(i)}, i = 1, 2, 3)$$

$$d\mathbf{u}_t^{(i)} = -\partial_{x_i} \langle \mathscr{P} \rangle(t, X_t) dt + \left(\sum_j G_{ij} \left(\mathbf{u}^{(j)} - \langle \mathbf{u}^{(j)} \rangle \right) \right) (t, X_t) dt + \sqrt{C_0 \varepsilon(t, X_t)} dB_t^{(i)}.$$

- Lagrangian model based on PDF equation
- \rightarrow Incompressible flow

Brownian motion

$$dX_t = \mathcal{U}_t dt \qquad \mathcal{U}_t = (\mathbf{u}_t^{(i)}, i = 1, 2, 3)$$

$$d\mathbf{u}_t^{(i)} = -\partial_{x_i} \langle \mathscr{P} \rangle (t, X_t) dt + \left(\sum_j G_{ij} \left(\mathbf{u}^{(j)} - \langle \mathbf{u}^{(j)} \rangle \right) \right) (t, X_t) dt + \sqrt{C_0 \varepsilon(t, X_t)} dB_t^{(i)}$$

Low accelerations terms

High accelerations terms

- Lagrangian model based on PDF equation
- → Incompressible flow

Brownian motion

$$dX_t = \mathcal{U}_t dt \qquad \mathcal{U}_t = (\mathbf{u}_t^{(i)}, i = 1, 2, 3)$$

$$d\mathbf{u}_t^{(i)} = -\partial_{x_i} \langle \mathscr{P} \rangle(t, X_t) dt + \left(\sum_j G_{ij} \left(\mathbf{u}^{(j)} - \langle \mathbf{u}^{(j)} \rangle \right) \right) (t, X_t) dt + \sqrt{C_0 \varepsilon(t, X_t)} dB_t^{(i)}$$

Low accelerations terms

High accelerations terms

 $\partial_{x_i} \langle \mathscr{P} \rangle(t, X_t) dt$ \blacktriangleright Pressure gradient term [reduced pressure]

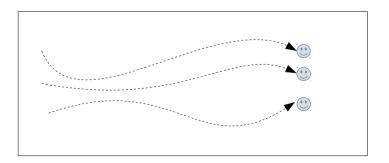
 $\sum_{i,j} G_{ij} \left(\mathbf{u}^{(j)} - \langle \mathbf{u}^{(j)} \rangle \right) \quad \longrightarrow \quad \text{``Drifter'' term - Come back to the mean velocity}$

 $\sqrt{C_0\varepsilon(t,X_t)}dB_t^{(i)}$ — Stochastic diffusion" term – Driven by pseudo dissipation

- Lagrangian model based on PDF equation
- \rightarrow Incompressible flow

$$d\mathbf{u}_{t}^{(i)} = -\partial_{x_{i}} \langle \mathscr{P} \rangle(t, X_{t}) dt + \left(\sum_{j} G_{ij} \left(\mathbf{u}^{(j)} - \langle \mathbf{u}^{(j)} \rangle \right) \right) (t, X_{t}) dt + \sqrt{C_{0} \varepsilon(t, X_{t})} dB_{t}^{(i)}.$$

Mean velocity In the particle cell

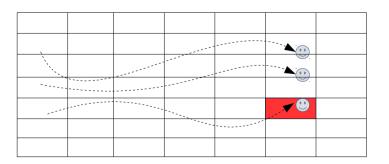


Numerical domain

- Lagrangian model based on PDF equation
- \rightarrow Incompressible flow

$$d\mathbf{u}_{t}^{(i)} = -\partial_{x_{i}} \langle \mathscr{P} \rangle(t, X_{t}) dt + \left(\sum_{j} G_{ij} \left(\mathbf{u}^{(j)} - \langle \mathbf{u}^{(j)} \rangle \right) \right) (t, X_{t}) dt + \sqrt{C_{0} \varepsilon(t, X_{t})} dB_{t}^{(i)}.$$

Mean velocity In the particle cell

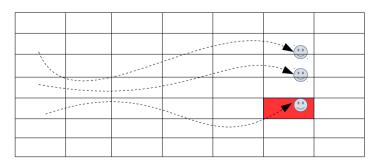


Eulerian mesh grid

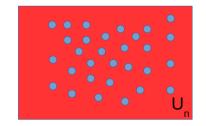
- Lagrangian model based on PDF equation
- \rightarrow Incompressible flow

$$d\mathbf{u}_{t}^{(i)} = -\partial_{x_{i}} \langle \mathscr{P} \rangle(t, X_{t}) dt + \left(\sum_{j} G_{ij} \left(\mathbf{u}^{(j)} - \langle \mathbf{u}^{(j)} \rangle \right) \right) (t, X_{t}) dt + \sqrt{C_{0} \varepsilon(t, X_{t})} dB_{t}^{(i)}.$$

Mean velocity In the particle cell



Eulerian mesh grid



N = Number of particle /cell keeps constant $< U > = mean(U_n)$, for n in [1,N]

- Lagrangian model based on PDF equation
- → Incompressible flow

$$d\mathbf{u}_{t}^{(i)} = -\partial_{x_{i}} \langle \mathscr{P} \rangle(t, X_{t}) dt + \left(\sum_{j} \left(\mathbf{u}^{(j)} - \langle \mathbf{u}^{(j)} \rangle \right) \right) (t, X_{t}) dt + \sqrt{C_{0}} (t, X_{t}) dB_{t}^{(i)}.$$

$$\mathbf{Mean velocity}$$

In the particle cell

- Lagrangian model based on PDF equation
- \rightarrow Incompressible flow

$$d\mathbf{u}_t^{(i)} = -\partial_{x_i} \langle \mathscr{P} \rangle(t, X_t) dt + \left(\sum_j G_j \left(\mathbf{u}^{(j)} - \langle \mathbf{u}^{(j)} \rangle \right) \right) (t, X_t) dt + \sqrt{C_0} (t, X_t) dB_t^{(i)}.$$

 \rightarrow IP model :

$$C_{0} = \frac{2}{3} \left(C_{R} + C_{2} \frac{\mathcal{P}}{\varepsilon} - 1 \right) \qquad G_{ij} = -\frac{C_{R}}{2} \frac{\varepsilon}{k} \delta_{ij} + C_{2} \frac{\partial \langle \mathbf{u}^{(i)} \rangle}{\partial x_{j}}$$

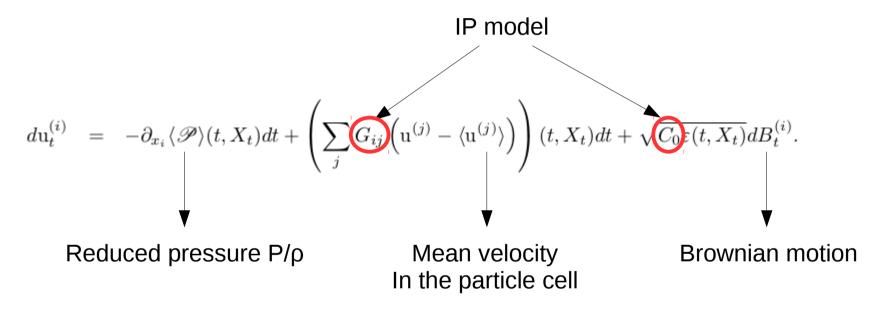
$$C_{R} = 1.8$$

$$C_{2} = 0.6 \min \left\{ 1, C_{\nu} \frac{\det \langle \mathbf{u}_{i}^{\prime} u_{j}^{\prime} \rangle}{(\frac{2}{3}k)^{3}} \right\} \qquad C_{\nu} = 3.4$$

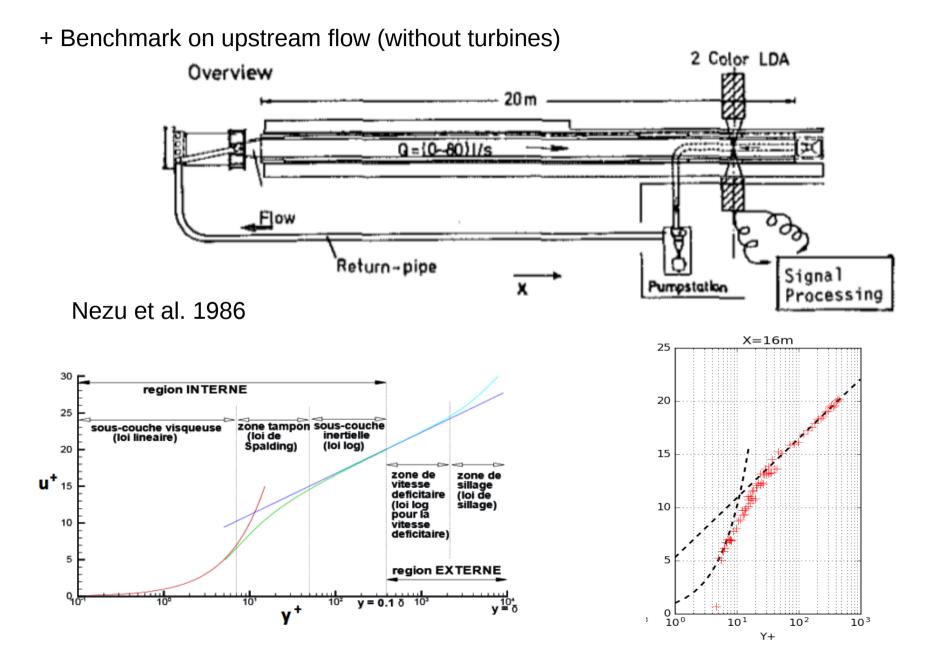
$$\mathcal{P} = \frac{1}{2} \left(\mathcal{P}_{11} + \mathcal{P}_{22} + \mathcal{P}_{33} \right)$$

$$\mathcal{P}_{ij} := -\sum_{k} \left(\langle \mathbf{u}^{(i)^{\prime}} \mathbf{u}^{(k)^{\prime}} \rangle \frac{\partial \langle \mathbf{u}^{(i)} \rangle}{\partial x_{k}} + \langle \mathbf{u}^{(j)^{\prime}} \mathbf{u}^{(k)^{\prime}} \rangle \frac{\partial \langle \mathbf{u}^{(j)} \rangle}{\partial x_{k}} \right)$$

- Lagrangian model based on PDF equation
- \rightarrow Incompressible flow

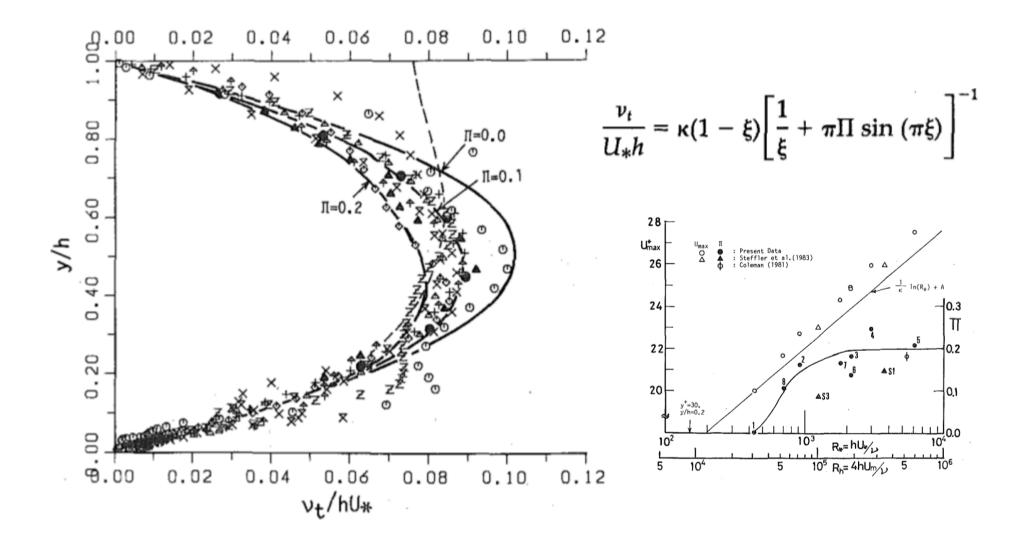


II.1 Description of the boundary layers



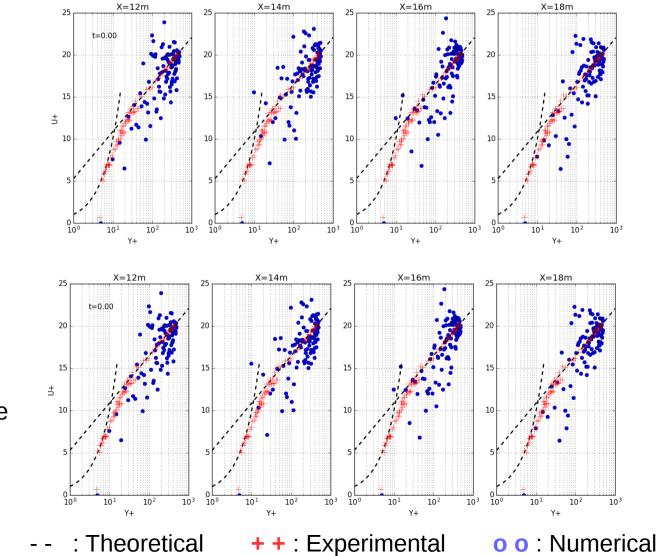
II.1 Description of the boundary layers

+ Benchmark on upstream flow (without turbines)



II.1 Description of the boundary layers

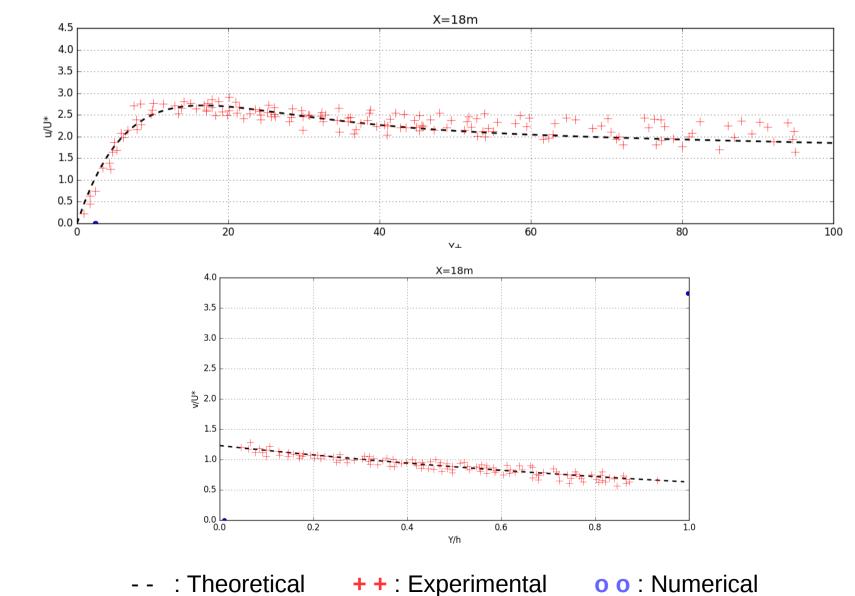
+ Benchmark on upstream flow (without turbines)



Old viscosity profile

New viscosity profile

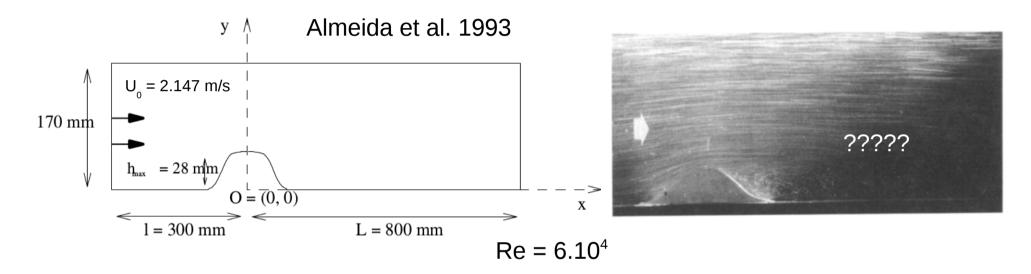
II.1 Description of the boundary layers



+ Benchmark on upstream flow (without turbines)

II.2 Effects of the bathymetry

+ Benchmark on upstream flow (without turbines)



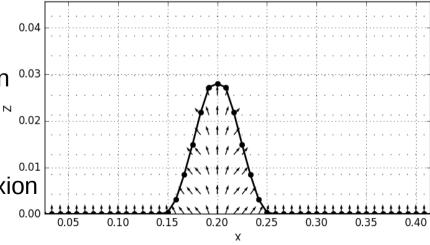
II.2 Effects of the bathymetry

+ Benchmark on upstream flow (without turbines)



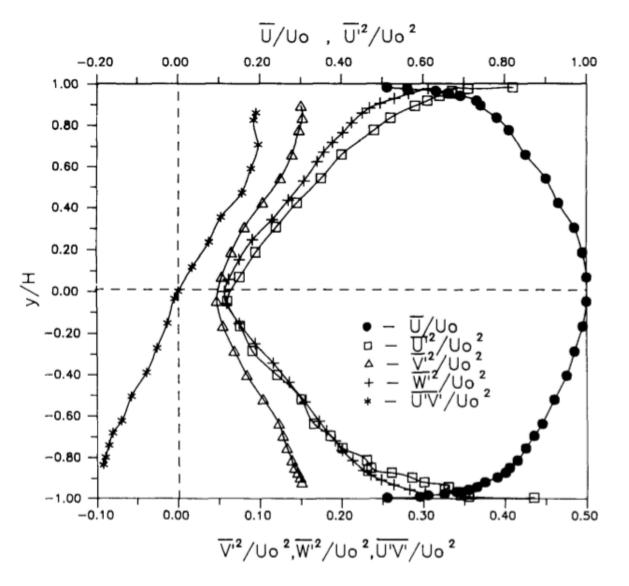
Numerical method :

- Reflexion of particles according to the local inclination
- On the ground, set the variances to get a log law
- Conservation of the covariance after/before the reflexion

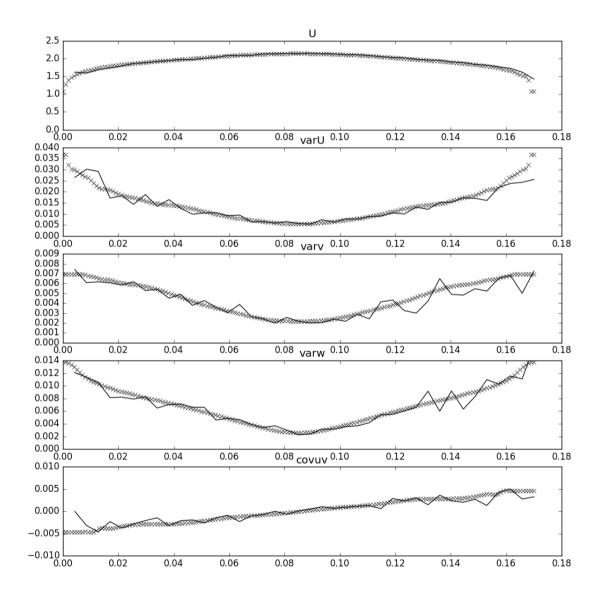


II.2 Effects of the bathymetry

+ First run without the hill

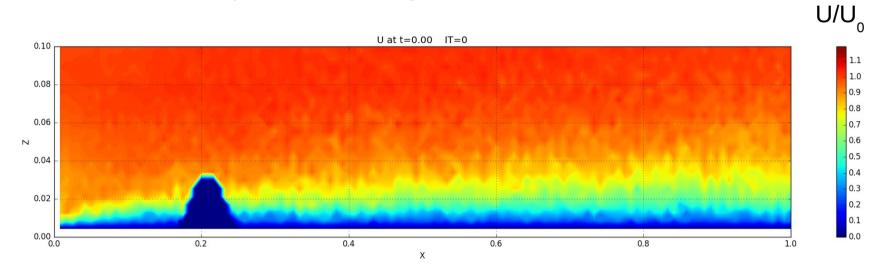


II.2 Effects of the bathymetry



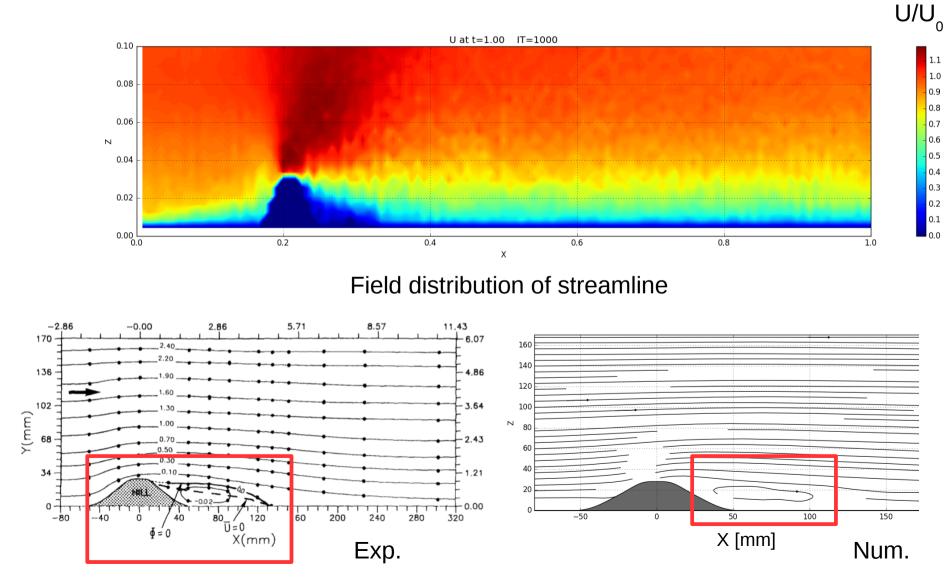
II.2 Effects of the bathymetry

+ Restart the computation including the hill



II.2 Effects of the bathymetry

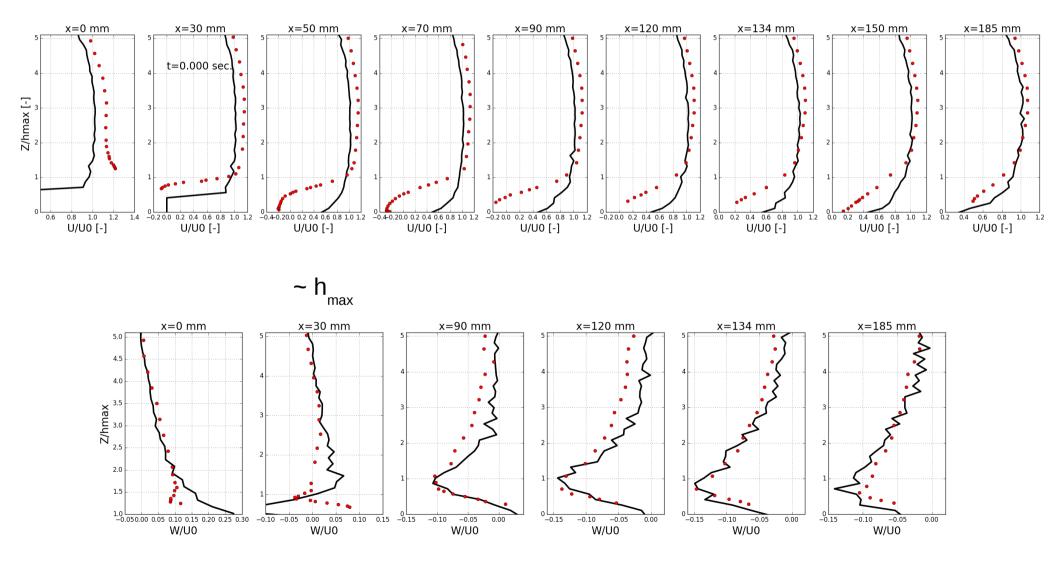
+ Mean velocity field



II.2 Effects of the bathymetry

U₀ = 2.147 m/s

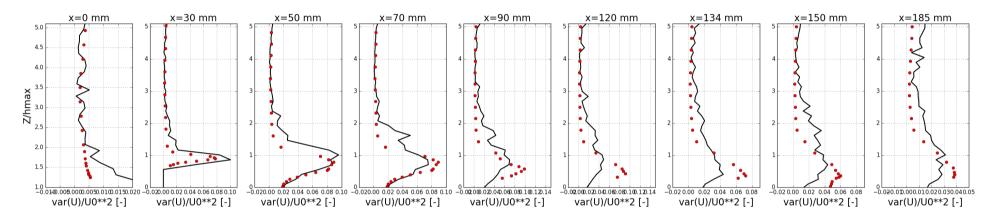
+ Mean velocity profiles



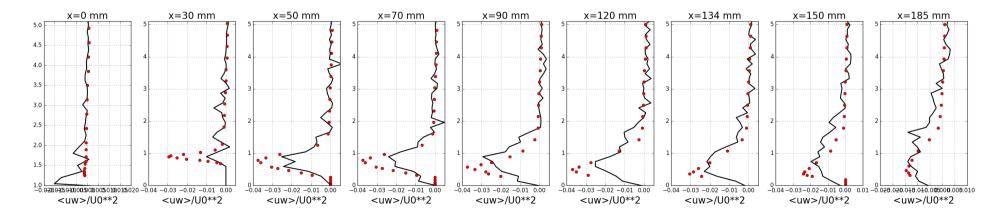
II.2 Effects of the bathymetry

U₀ = 2.147 m/s

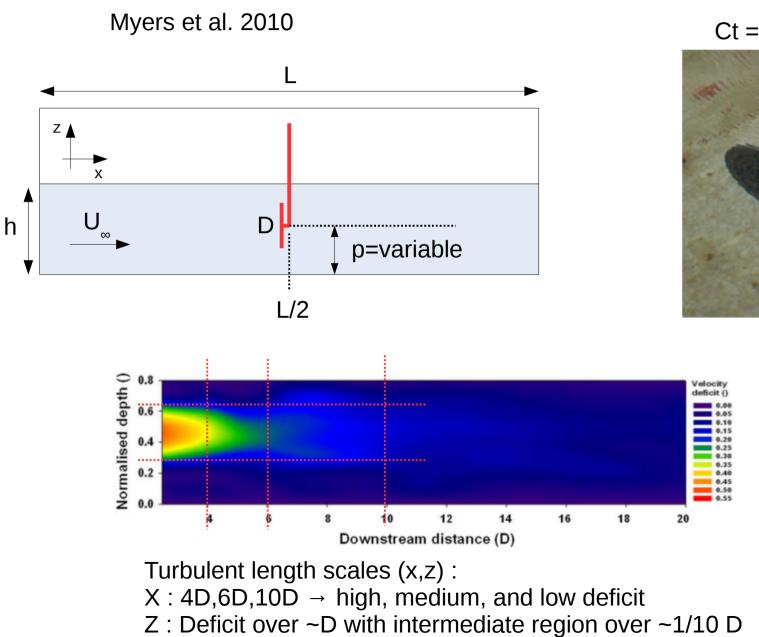
+ Velocity fluctuations



+ Velocity correlations



II.3 Turbulence generated downstream turbines

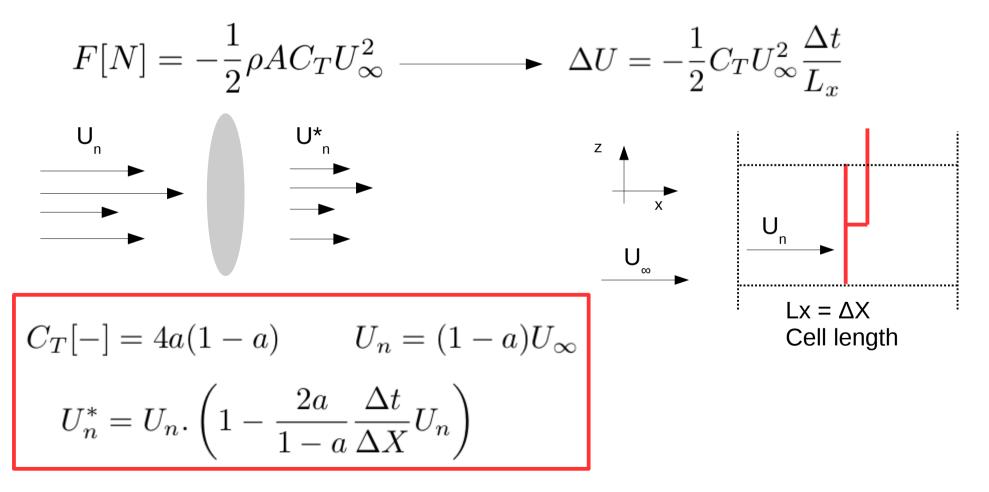


Ct = variable

II.3 Turbulence generated downstream turbines

Model 1-D without rotation "porous disk"

First Model

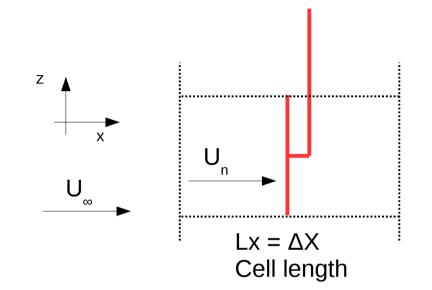


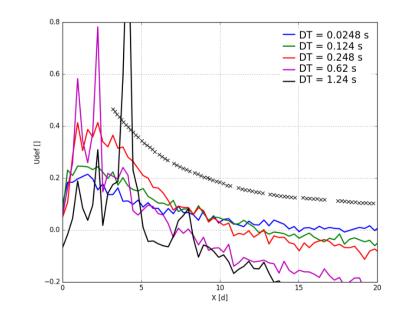
II.3 Turbulence generated downstream turbines

Model 1-D without rotation "porous disk"

First Model

 $C_T[-] = 4a(1-a) \qquad U_n = (1-a)U_\infty$ $U_n^* = U_n \cdot \left(1 - \frac{2a}{1-a}\frac{\Delta t}{\Delta X}U_n\right)$





Dependence to time step :

- High DT \rightarrow Better close to the disk
- Low DT \rightarrow Better far from the disk

Difficult to configurate

II.3 Turbulence generated downstream turbines

Model 1-D without rotation "porous disk"

$$F_{particle} = -\frac{1}{2}\rho A C_T U_{\infty}^2 \underbrace{\mathcal{V}_p}_{\mathcal{V}_T} \text{Volume of 1 particle}$$

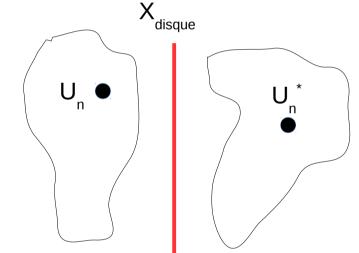
$$\mathcal{V}_T = N_T \mathcal{V}_p$$

$$U_n^* = U_n - 2a(1-a)U_{\infty}^2 \frac{\Delta t}{\Delta X} \frac{A}{\Delta Y \Delta Z} \frac{N_{part/cell}}{N_T}$$

II.3 Turbulence generated downstream turbines

Model 1-D without rotation "porous disk"

- Vt = Volume of particles that cross the disk between t_n and t_{n+1}
- Vp = Volume of one particle Volume of cell / Number of cell per cell



$$F_{particle} = -\frac{1}{2}\rho A C_T U_{\infty}^2 \underbrace{\mathcal{V}_p}_{\mathcal{V}_T} \text{Volume of 1 particle}$$

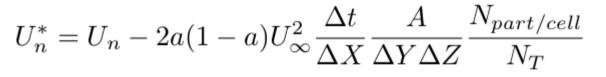
$$\mathcal{V}_T = N_T \mathcal{V}_p$$

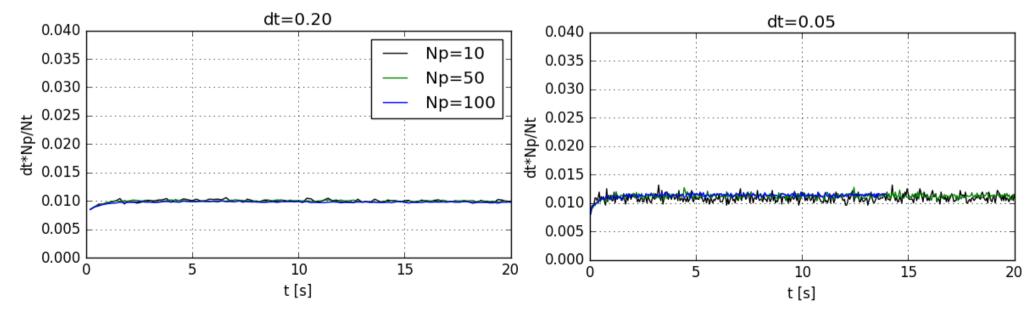
$$U_n^* = U_n - 2a(1-a)U_{\infty}^2 \frac{\Delta t}{\Delta X} \frac{A}{\Delta Y \Delta Z} \frac{N_{part/cell}}{N_T}$$

II.3 Turbulence generated downstream turbines

Model 1-D without rotation "porous disk"

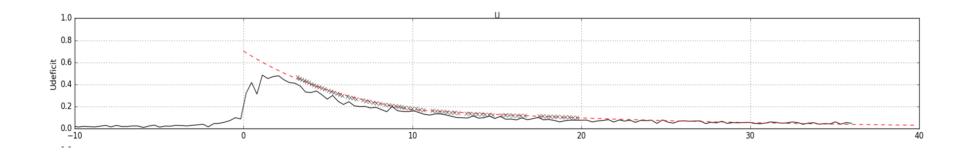
$$F_{particle} = -\frac{1}{2}\rho A C_T U_{\infty}^2 \frac{\mathcal{V}_p}{\mathcal{V}_T}$$
$$\mathcal{V}_T = N_T \mathcal{V}_p$$





II.3 Turbulence generated downstream turbines

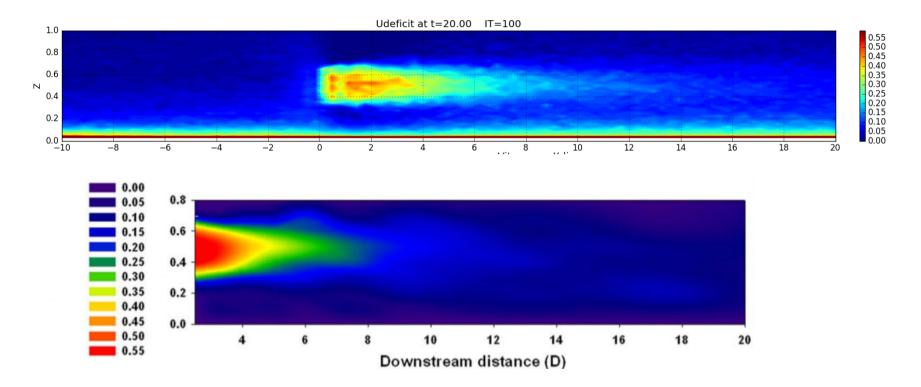
Model 1-D without rotation "porous disk"



II.3 Turbulence generated downstream turbines

Model 1-D without rotation "porous disk"

Model including particle volume

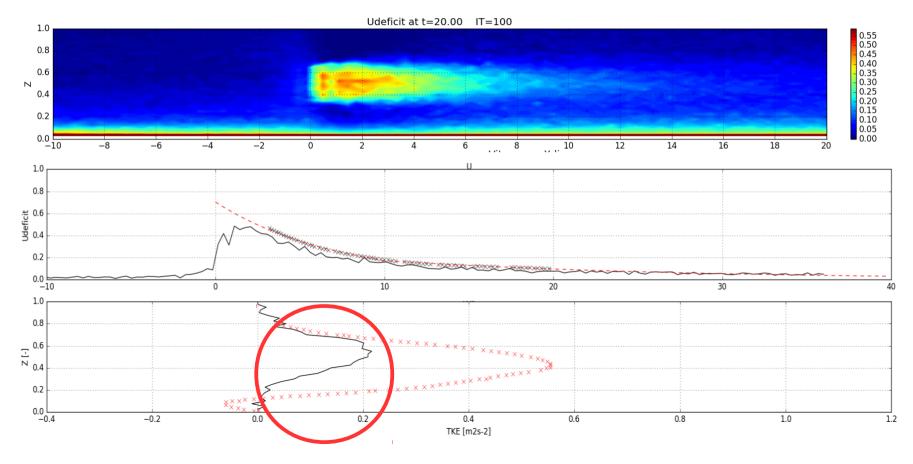


Repartition of Velocity deficit : no so good !

II.3 Turbulence generated downstream turbines

Model 1-D without rotation "porous disk"

Model including particle volume



Significant under-estimation of TKE

II.3 Turbulence generated downstream turbines

New Model (using calibration from exp. data)

 \rightarrow New approach to get better flow statistics

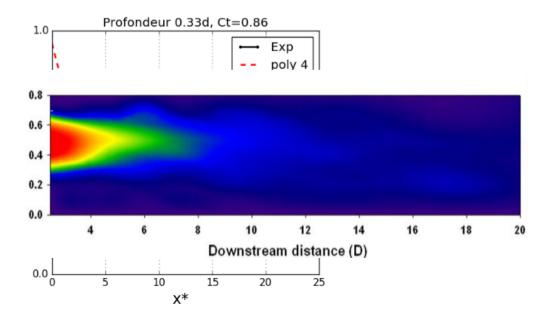
х*

II.3 Turbulence generated downstream turbines

New Model (using calibration from exp. data)

 \rightarrow New approach to get better flow statistics

$$G_{ij}(t, X_t) \left(U_t - \langle U \rangle \right) \longrightarrow G_{ij}(t, X_t) \left(U_t - U_{ref} \right)$$
$$U_{ref} = \frac{\alpha}{\alpha + \alpha'} \langle U \rangle + \frac{\alpha'}{\alpha + \alpha'} U_{myers}(x^*, a)$$

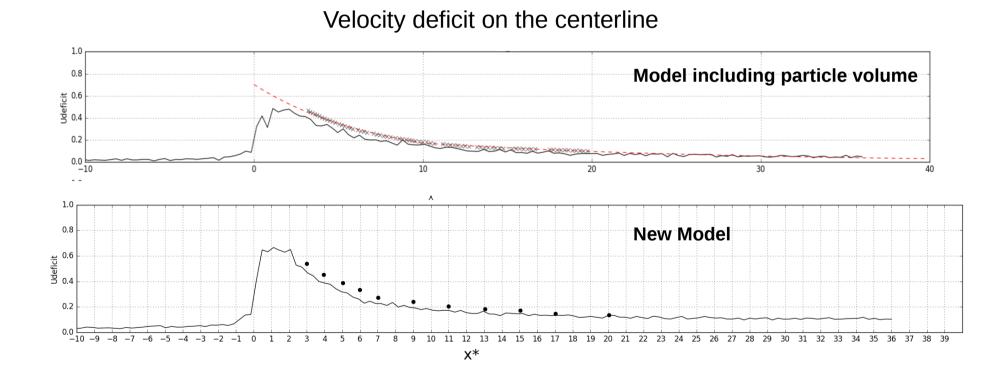


$$U_{myers} = U_{\infty}(1 - U_{deficit}f(z^*))$$

Vertical ponderation

II.3 Turbulence generated downstream turbines

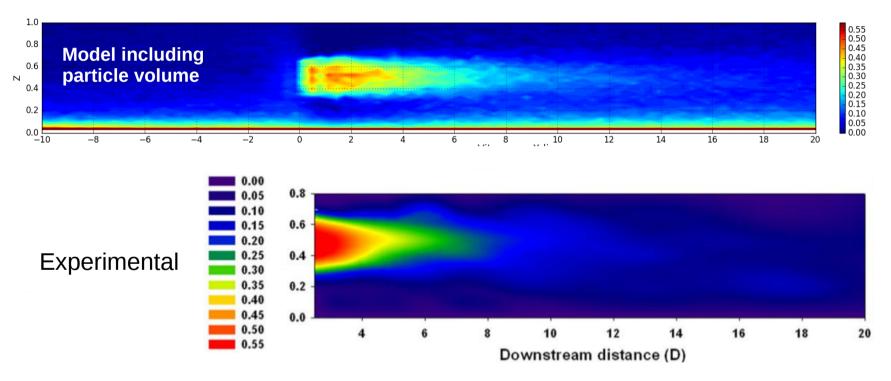
New Model (using calibration from exp. data)



II.3 Turbulence generated downstream turbines

New Model (using calibration from exp. data)

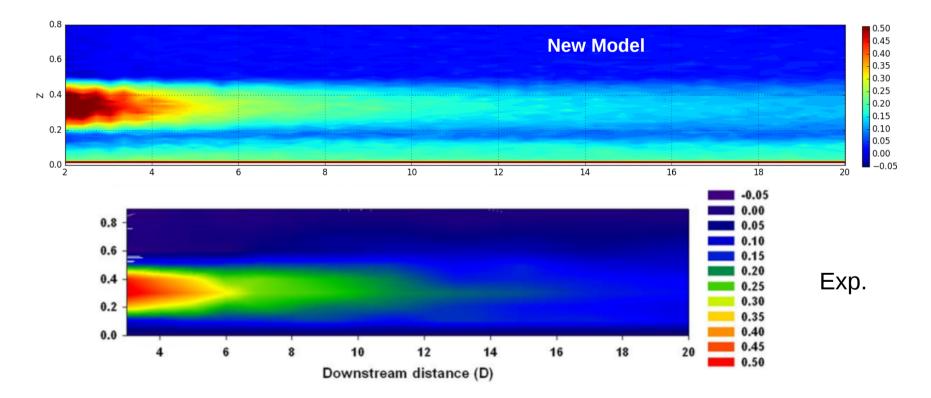
Comparison of Spatial distribution of the velocity deficit



II.3 Turbulence generated downstream turbines

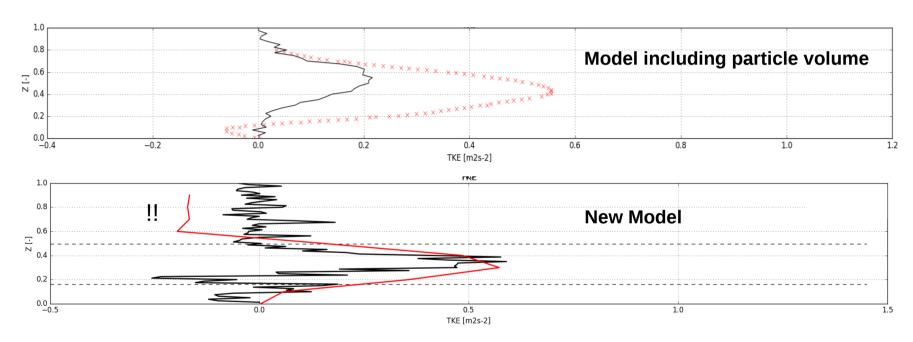
New Model (using calibration from exp. data)

Comparison of Spatial distribution of the velocity deficit



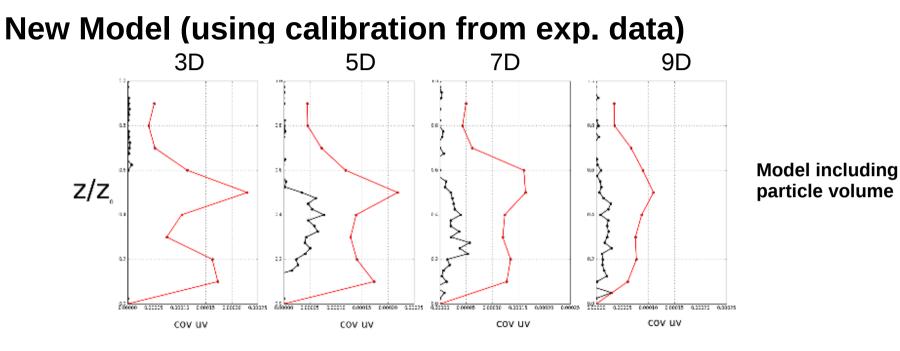
II.3 Turbulence generated downstream turbines

New Model (using calibration from exp. data)

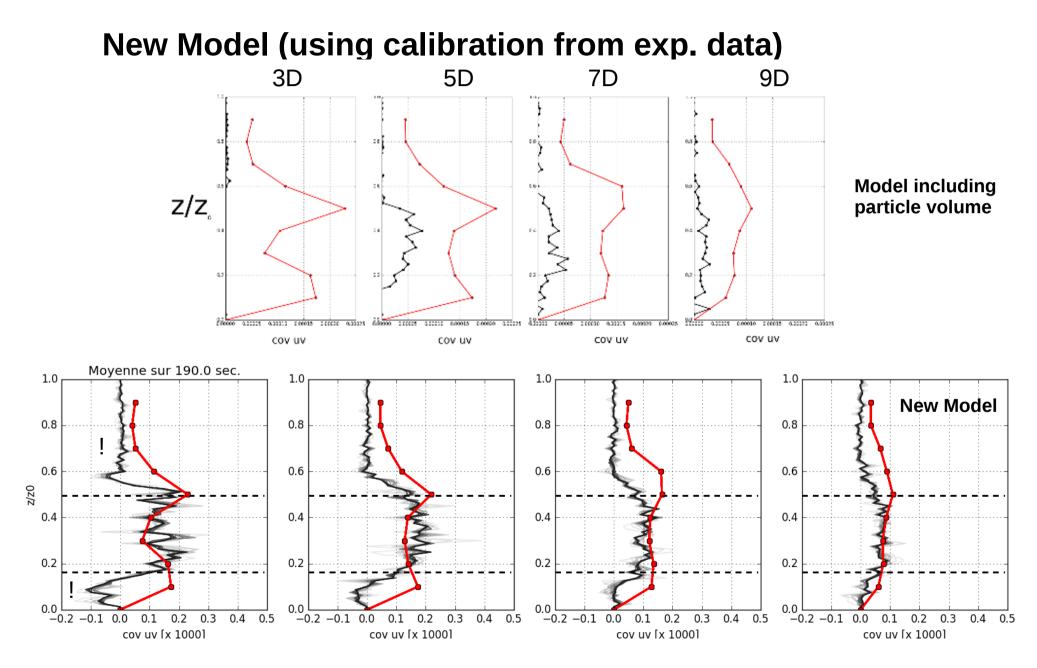


TKE

II.3 Turbulence generated downstream turbines



II.3 Turbulence generated downstream turbines



III. Conclusion

- Boundary layers quite well represented
 - \rightarrow Both mean velocity field and turbulence
 - \rightarrow However the sub-viscous layer is not included
- Effect of bathymetry
 - $\rightarrow\,$ Mean fields are well described
 - $\rightarrow\,$ Some efforts are needed close to the hill
- Porous disk
 - \rightarrow Partially validated
 - → Velocity deficit is well described
 - \rightarrow TKE is well predicted far from the interface
 - \rightarrow Covariances have good tendency but lack of accuracy
- Computational times quite reasonable

III. Perspectives

- Improve the porous disks
 - \rightarrow Collaboration with Cristian Escauriaza
- Improve the boundary layer
 - \rightarrow Including the sub-viscous layer
- Propose more complex model of turbines including rotation
 → Collaboration with Hydrotube (Bordeaux)
- Parallelization of the code SDM to reduce computational times

cyril.mokrani@meric.cl Mireille.Bossy@inria.fr antoine.rousseau@inria.fr

