Simulation et Optimisation pour les Energies Marines Renouvelables

10-12 janv. 2018 Paris

Simulation numérique 3D du mouvement d'éoliennes flottantes par méthode de pénalisation

Frédéric Golay

Institut de Mathématique de Toulon

Philippe Fraunié

Institut Méditerranéen d'Océanologie

Alioune Sambe et Thomas Altazin (doctorants)

Motivation

Outline

•

٠

٠

Hyperbolic solver BB-AMR3D

Air-Water model

Wave propagation

Fluid-structure interaction

P. Helluy, A.N. Sambe, M. Ersoy, L. Yushchenko

- Hyperbolic solver BB-AMR3D
 - Finite volume
 - Local time-stepping
 - BB-AMR
 - Mesh refinement criterion
- Air-Water model
- Wave propagation
- Fluid-structure interaction

Finite volume approximation

$$\frac{\partial w(t)}{\partial t} + \nabla \cdot f(t, w) = G$$

$$\int_{c_k} \frac{\partial w(t)}{\partial t} + \sum_{a} \int_{\partial c_{k/a}} f(t, w) \cdot \vec{n}_{k/a} = 0$$

$$w_{k}(t) \approx \frac{1}{|C_{k}|} \int_{C_{k}} w(x,t) d\Omega \qquad \int_{\partial C_{k/a}} f(t,w) \cdot \vec{n}_{k/a} ds \approx |\partial C_{k/a}| F(w_{k}(t),w_{a}(t),\vec{n}_{k/a}) = |\partial C_{k/a}| F_{k/a}(t)$$

$$|C_{k}| \frac{\partial w_{k}(t)}{\partial t} + \sum_{a} |\partial C_{k/a}| F(w_{k}(t), w_{a}(t), n_{k/a}) = 0$$
 Riemann solver

Euler explicit ordre 1

$$w_{k}(t_{n+1}) = w_{k}(t_{n}) - \delta t_{n} \sum_{a} \frac{|\partial C_{k/a}|}{|C_{k}|} F_{k/a}(t_{n}) \qquad h_{k} = \frac{|C_{k}|}{\sum_{a} |\partial C_{k/a}|} \qquad CFL \quad \delta t_{n} \leq Min\left(\frac{h_{k}}{\left\|\vec{u}\right\| + c}\right)$$

Second order in time and space

RK2

$$w_{k}(t_{n+1/2}) = w_{k}(t_{n}) - \frac{\delta t_{n}}{2|C_{k}|} \sum_{a} |\partial C_{k/a}|F_{k/a}(t_{n})$$

 $w_{k}(t_{n+1}) = w_{k}(t_{n}) - \frac{\delta t_{n}}{1 C_{1}} \sum |\partial C_{k/a}| F_{k/a}(t_{n+1/2})$

AB2
$$\mathbf{w}_{k}(\mathbf{t}_{n+1}) = \mathbf{w}_{k}(\mathbf{t}_{n}) - \frac{\delta \mathbf{t}_{n}}{|C_{k}|} \sum_{a} |\partial C_{k/a}| \left[F_{k/a}(\mathbf{t}_{n}) + \frac{\delta \mathbf{t}_{n}}{2\delta \mathbf{t}_{n-1}} (F_{k/a}(\mathbf{t}_{n}) - F_{k/a}(\mathbf{t}_{n-1})) \right]$$

$$F\left(w_{k}(t), w_{a}(t), \vec{n}_{k/a}\right) \approx \Re\left(0, w_{k}, w_{a}, \vec{n}_{k/a}\right) \quad \text{ordre 1}$$

$$F\left(w_{k}(t), w_{a}(t), \vec{n}_{k/a}\right) \approx \Re\left(0, w_{k} + \frac{h_{k}}{2}\nabla w_{k}, w_{a} - \frac{h_{a}}{2}\nabla w_{a}, \vec{n}_{k/a}\right) \quad \text{ordre 2 MUSCL}$$

Barth-Jespersen's limiter

Estimation of primitive variables gradient

$$\left|\Omega_{e}\right| \nabla \alpha = \int_{\Omega_{e}} \nabla \alpha dx = \int_{\partial \Omega_{e}} \vec{\alpha \cdot n dI}$$

Slope limitation

For each cell i (centroid M_{i}) of neighbour j, λ is define as

 $\mathsf{Min}(\alpha_i, \alpha_j) \le \alpha_i + \lambda \nabla \alpha_i \cdot \overline{\mathsf{M}_i \mathsf{M}_j} \le \mathsf{Max}(\alpha_i, \alpha_j)$

Example with 3 levels:

i = 1, j = 0	Compute F ⁽³⁾ (0)
	Compute w ⁽³⁾ (dt)
i=2, j=1	Compute F ⁽³⁾ (dt), F ⁽²⁾ (0)
	Compute w ⁽³⁾ (2dt), w ⁽²⁾ (2dt)
i=3, j=0	Compute F ⁽³⁾ (2dt)
	Compute w ⁽³⁾ (3dt)
i=4, j= 2	Compute F ⁽³⁾ (3dt), F ⁽²⁾ (2dt), F ⁽¹⁾ (0)
	Compute $w^{(3)}(4dt)$, $w^{(2)}(4dt)$, $w^{(1)}(4dt)$

Level 2

Tang & Warneke projection Osher & Sanders projection

Adaptive Mesh Refinement

Octree

- Hight scalability
- Mostly cartesian finite volume grid
- Very local mesh refinement

http://gerris.dalembert.upmc.fr/gerris/examples/examples/tangaroa.html#htoc14

Fuster et al., 2009 (Gerris)

Anisotropic mesh adaptation

- Very powerful boundary layer capturing
- Stabilized finite element
- Very local mesh refinement

Coupez et al., 2013 (Cimlib)

Block-Based Adaptive Mesh Refinement

Step 1: We built an unstructured mesh composed by hexahedral cells which define the initial domain 0

9	10	11	12
5	6	7	8
1	2	3	4

Step 2: Each cell defines a Block which can be locally and temporarily mesh in a cartesian way. The Level of mesh refinement is adapted

B9	B10	B11	B12
1,1,0	1,1,0	1,1,0	1,1,0
B5	B6	B7	B8
1,1,0	1,1,0	1,1,0	1,1,0
B1	B2	B3	B4
1,1,2	1,1,0	1,1,0	1,1,0

 n_x , n_x , n_x : discretization of level 0 nrb : Level of mesh refinement

2^{nrb}n_x: number of cells in x-direction

Step 3: According to Cuther Merce's scheme, the blocks are allocated to domain in order to balance the Mpi processes.

Domain 3

Step 4: Each block are locally meshed in a temporarily structured way according to their parameters, the adjacent blocks and the domain interfaces.

Domain 3

Domain decomposition: Z-ordering

The Morton order (or Z-order) is a mapping from an n-dimensional space onto a linear list of numbers (Space filling curve)

 $(x,y,z) \rightarrow (i(x),i(y),i(z))_{10} \rightarrow (i(x),i(y),i(z))_2 \rightarrow znum_2 \rightarrow znum_{10}$ $(2,5,0)_{10} \rightarrow (010,101,000)_2 \rightarrow 010100010_2 \rightarrow 162_{10}$

Domain 1: 22 cells Domain 2: 21 cells Domain 3: 20 cells Domain 4: 27 cells

Mesh refinement criterion: Croisille 1991, Puppo 2002, 2003, 2011 ...

$$\frac{\partial w}{\partial t} + \operatorname{div} f(w) = 0$$

According to the Lax entropy condition

- For every smooth solution $\mathcal{P}=0$
- Across a rarefaction wave $\mathcal{P}=0$
- Across a shock wave P < 0

Numerical density of entropy production

Error indicator

The numerical density of entropy production is computed as

$$\boldsymbol{\mathcal{P}}_{k}^{n} := \frac{s(w_{k}(t_{n+1})) - s(w_{k}(t_{n}))}{\delta t_{n}} + \frac{\delta \psi_{k}(t_{n})}{h_{k}} + \frac{\delta t_{n}}{2\delta t_{n-1}h_{k}} (\delta \psi_{k}(t_{n}) - \delta \psi_{k}(t_{n-1}))$$

 \Leftrightarrow

$$\overline{\boldsymbol{\mathcal{P}}_{\Omega}} = \frac{1}{|\Omega|} \int \boldsymbol{\mathcal{P}}_{k}^{n} dx \quad ; \quad \overline{\boldsymbol{\mathcal{P}}_{Block}} = \frac{1}{|Block|} \int \boldsymbol{\mathcal{P}}_{k}^{n} dx$$
If
$$\overline{\boldsymbol{\mathcal{P}}_{Block}} \leq \alpha_{\min} \overline{\boldsymbol{\mathcal{P}}_{\Omega}} \quad \text{the block is coarsened}$$
If
$$\alpha_{\max} \overline{\boldsymbol{\mathcal{P}}_{\Omega}} \leq \overline{\boldsymbol{\mathcal{P}}_{Block}} \quad \text{the block is refined}$$

$$\boldsymbol{\mathcal{P}} = \frac{\partial s}{\partial t} + \operatorname{div} \boldsymbol{\psi}(s) \leq 0$$

 $\nabla_{w}\psi = \nabla_{w}s\nabla_{w}f$

$$\begin{cases} \frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0\\ \frac{\partial \rho u}{\partial t} + \frac{\partial (\rho u^2 + p)}{\partial x} = 0\\ \frac{\partial \rho E}{\partial t} + \frac{\partial (\rho E + p)}{\partial x} = 0\\ p = (\gamma - 1)\rho(E - u^2/2) \end{cases}$$

$$\begin{cases} \frac{\partial s}{\partial t} + \operatorname{div} \psi(s) \le 0\\ s = -\rho \ln\left(\frac{p}{\rho^{\gamma}}\right)\\ \psi = us \end{cases}$$

SOD's test case

$$(\rho, u, p)(0, x) = \begin{cases} (1., 0., 1.) & \text{si } x \le 0\\ (0.125, 0., 0.1) & \text{si } x \le 0 \end{cases}$$

 $N_{ini} = 200$

Validation: Euler model

P. Helluy, T. Barberon, S. Rouy, A.N. Sambe, D. Sous, P. Fraunié

Air-Water model

- Hyperbolic solver BB-AMR3D
- Air-Water model
 - Bi-fluid isothermal Euler Model
 - Numerical tools
 - Dambreaking
- Wave propagation
- Fluid-structure interaction

Wave breaking: which model ?

Model complexity Cpu time

• SPH...... Difficult to implement and drastically time consuming! Voileau

Lattice Boltzmann ???
 Grilli

• Navier-Stokes (VF, GD, VOF, Level Set,...): viscous, turbulent, incompressible, multiphase, surface tension, ...

..... Physically relevant but very slow and essentially 2D

Zaleski, Fuster, Popinet (Gerris), Nkonga (Fluidbox), Vincent, Lubin, Caltagirone (Thetis), Coupez (Forge3D), Zhan, Liu,...

Nkonga 2009 (Fluidbox)

• Boundary Integral Equations Method (BIEM), (incompressible inviscid irrotational flow solver)......Very accurate for the propagation but unable to simulate wave breaking

• Shallow water...... Fast computing but unable to simulate wave breaking

Zaleski, Fuster, Popinet (Gerris), Diaz, Dutykh (VOLNA), Grilli, Blaise (SLIM), Vincent, Lubin, Caltagirone (Thetis), ,...

Bi-fluid isothermal Euler model

We neglect viscosity, surface tension, turbulence

- If Mach number <0.3 fluid flow is *almost* incompressible
- \rightarrow The model is relaxed to low compressible flow
- Euler compressible model Simple and allows fast 3D solvers
- Explicit scheme Allows easy parallel implementation
- EOS with artificial sound speed...... CFL less restrictive and low numerical viscosity

Interface sharpening using time splitting and penalization Kokh, Kaceniauskas, Allaire, So, Shukla, Kreiss, Olson, Shyue, ...

✓ Stability
✓ Conservation
✓ Preserve constant u,p states

Adaptive mesh refinement using the numerical production of entropy

$$s = \frac{1}{2}\rho u^{2} + c_{0}^{2}\rho \ln(\rho) - c_{0}^{2}(\rho_{w} - \rho_{A})\phi$$

$$\psi(s) = \left(s + c_{0}^{2}\rho + c_{0}^{2}(\rho_{w} - \rho_{A})\phi\right)\vec{u} = \left(\frac{1}{2}\rho u^{2} + c_{0}^{2}\rho(\ln(\rho) + 1)\right)\vec{u}$$

Criterion / block

Computations have been performed at the mesocentre of Aix-Marseille university

2-3D Dambreaking with obstacle: Experimental confrontation

48 Domains = 48 Cpus = 3628 Blocks 4 mesh refinement levels

Maritime Research Institute Netherlands (MARIN) K.M.T. Kleefsman (2005)

60 50 40 30 20

Confrontation with others CFD codes

- ····· Experiment
 - SPH Violeau et al. 2010
- Our computation 2011
- WOF Kleefsman et al. 2005
- VOF-SM Vincent et al. 2010

K. Pons, M. Ersoy, R. Marcer

- Hyperbolic solver BB-AMR3D •
- Air-Water model ٠
- Wave propagation ٠
 - Shallow water Model ٠
 - Numerical tools •
 - Examples •
 - Shallow water / Bi-fluid Euler coupling •
- Fluid-structure interaction ٠

ANR Project TANDEM http://www-tandem.cea.fr/

Adaptive mesh refinement using the numerical production of entropy

$$s = h \frac{\|\vec{u}\|^2}{2} + g \frac{h^2}{2} + ghZ$$
, $\psi = \left(s + g \frac{h^2}{2}\right) \vec{u}$

Well balanced hydrostatic reconstruction by Audusse et al. 2004

 $\Delta Z_{k/a}$ $\;$ Jump of bathymetry across cells k and a

with

$$h_{k}^{*} = \max(0, h_{k} - \max(0, \Delta Z_{k/a}))$$

 $h_{a}^{*} = \max(0, h_{a} - \max(0, \Delta Z_{k/a}))$

$$F(w_{k}^{*}(t),w_{a}^{*}(t),\vec{n}_{k/a}) + \left\{ \begin{matrix} 0 \\ \frac{g}{2} (h_{k}^{2} - (h_{k}^{*})^{2})\vec{n}_{k/a} \end{matrix} \right\} \bigg|_{C_{k}} + \left\{ \begin{matrix} 0 \\ \frac{g}{2} (h_{a}^{2} - (h_{a}^{*})^{2})\vec{n}_{k/a} \end{matrix} \right\} \bigg|_{C_{a}}$$

Numerical tools: Bathymetry and BB-AMR

The dynamic discretization of the bathymetry Goals:

- Mass conservation, still water steady state (η=cste)
- Avoiding spirious waves
- Low cost interpolation from experimental database

Particular case : the shoreline (solution-> always at the lowest mesh refinement level)

Mean square interpolation of the experimental bathymetry on a reference grid per block

Tsunami Tohoku-Oki 2011

Automatic threshold

Distribution fonction

Dannehoffer 1987, Powel 1989, ...

Shallow water / Bi-fluid Euler coupling

Extrapolation Shallow water to Euler

Interpolation Euler to Shallow water

Run-up of a solitary wave Synolakis, 1987

Fluid-Structure Interaction

T. Altazin, P. Fraunié

- Hyperbolic solver BB-AMR3D
- Air-Water model
- Wave propagation
- Fluid-structure interaction
 - FSI Model
 - Numerical tools
 - Examples

Projet CHEF Comportement Aero/Hydrodynamique des Éoliennes Flottantes

Monolithic approach: fluid and solid are considered simultaneously

The rigid body is considered as a « rigid fluid ». The velocity field inside the « solid » is projected to rigid space

M. Coquerelle, G,-H,. Cottet, "A vortex level set method for two-way coupling of an incompressible fluid colliding rigid bodies", J. Comp. Phys., 2008,

The formulation is equivalent in the compressible case

 $\frac{\partial \rho \vec{u}}{\partial t} + \operatorname{div}(\rho \vec{u} \otimes \vec{u} + p\vec{l}) = \rho \vec{g} + AR$

- Adaptive mesh refinement using numerical production of entropy and enhanced near to the fluid-solid interface ٠
- Normal stress and velocity continuity at the interface ٠
- Penalization using prediction correction method ٠

 $\frac{\partial \rho \vec{u}}{\partial t} + \operatorname{div}(\rho \vec{u} \otimes \vec{u} + p\vec{l}) = \rho \vec{g}$ Prediction

Correction $\frac{\partial \rho \vec{u}^*}{\partial \tau} = \chi_s \lambda \rho_s (\vec{u} - \vec{u}_s)$

projection of the predicted velocity over the rigid motion vector space •

$$\vec{u}_{s}(M) = \frac{1}{m} \int_{\Omega} \chi_{s} \rho \vec{u} d\Omega + \left(\int_{\Omega}^{\Xi-1} \int_{\Omega} \chi_{s} \rho \vec{GM} \wedge \vec{u} d\Omega \right) \wedge \vec{GM}$$

- Determination of the indicator function using ray-casting ٠
- Definition of the bodies using OBJ meshes ٠

Free fall of a cube, water entry problem

5th order Stoke's swell and floating rigid body

Free raising of a cylindrical buoy (Colicchio et al., 2009)

3D numerical experiment

Application to floating wind turbine

OBJ mesh

Outlook

Outlook

- A 3D finite volume code solving hyperbolic systems using BB-AMR with entropic criterion, a good compromise between relevance, accuracy and computing time .
 - O Low Mach bi-fluid isothermal Euler model.
 - O Shallow water model.
 - O Monolithic fluid-structure interaction model.
- Shallow water / Bi-fluid Euler coupling.
- Application to wave propagation, wave breaking and buoy motion.

Perspectives

- Implementation of relaxed Serre-Green-Naghdi model (Favrie, Gavrilyuk 2017).
- Experimental validation of 3D FSI.
- Extension to variable density.
- Coupling bi-fluid / FSI / SGN.
- Subgrid two phases models

Thank you for your attention

- F. Golay, P. Helluy, "Numerical schemes for low Mach wave breaking", Int. J. Comp. Fluid Dyn., 2007.
- Sambe A., Golay F., Sous D., Fraunié P., R. Marcer, "Numerical wave breaking over macro-roughness", Eur. J. Mech. B/Fluid, 2011.
- Golay F., Ersoy M., Yushchenko L., D. Sous, "Block-Based Adaptive Mesh Refinement scheme using numerical density of entropy production for three-dimensional two-fluid flows", Int. J,Comp. Fluid Dyn., 2015.
- Marcer R., Pons K., Journeau C., Golay F., "Validation of CFD models for tsunami simulation. TANDEM Project", Rev. Paralia, 2015.
- Altazin T., Ersoy M., Golay F., Sous D., Yushchenko L., "Numerical investigation of BB-AMR scheme using entropy production as refinement criterion", Int. J. Comp. Fluid Dyn., 2016.

• France Energies Marines : *www.france-energies-marines.org*/

• ADEME : www.ademe.fr/

Région Occitanie

Institut France Québec Maritime <u>www.ifqm.info/fr/accueil</u>

 Appel à projet PHC Maghreb 2019 : L'espace méditerranéen face aux enjeux climatiques et énergétiques.