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Motivation
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Congested shallow water model
Starting from Navier-Stokes with gravity and roof, we get [Gerbeau, Perthame’00]
8ch+V - (hu) =0

B¢ (hu) + V- (hu® u) = —hV (g (h+ B) + p)

h<H (h—H)(p-P)=0 p>P,

Energy conservation For smooth enough solutions, the following energy law holds

HE+V -G =—(p— P.)0:H+ hd: (gB + Ps)
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h h
with the mechanical energy £ = EHUHQ + gh (B + 7) + hP; and the energy flux G



We have a "hyperbolic system” which has to verify a constraint
Oth+V - (hu)=0
Ot (hu) +V - (hu® u) = —hV (g (h+ B) + p)
h<H (h—H)(p-P)=0 p>P,

Difficulty: H depends on space and time and interaction between water and roof

> COUPLING STRATEGY [Lannes'17]

e Dynamic of the interface?
e Transmission conditions at the interface?

> UNIFIED STRATEGY [Bourdarias et al."12]
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Relaxed model

Pseudo-compressible relaxation approach

RELAXED MODEL

Othy + V- (h)\uA) =0
Ot (haun) + V- (haux ® ux) = —h\Voy

hy —H
G P,

with ¢\ = g (hx + B) + pa
Difficulty: relevant for A < 1

Energy conservation For smooth enough solutions, the following energy law holds

OtEX+V -Gy =—(pr — Pa)atﬁ+ h)0: (gB + P3)

(hr—H)’

h h
with £, = ?>‘||u>\H2 + ghy (B+ %) + h\P:+ g =z * and the energy flux Gy
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Relaxed model

RELAXED MODEL

Othy +V - (h)\uA) =0
Ot (haun) + V- (haux ® uy) = —h\Voy

(1 ~7)

Px=g 2 =+ P,

Hyperbolicity The model is strictly hyperbolic with the eigenvalues

= Use a scheme accurate in the limit where potential forces are large in front of the
advection termes
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Mandatory characteristics

Lake at rest preservation: steady solution with vanishing velocity

A perturbation on h induces a perturbation on p, induces a perturbation on u, ...

= Use a well-balanced scheme
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Numerical scheme

Numerical scheme

some references: [Dellacherie et al.'16], [Herbin et al.’14], [Parisot, Vila'16], ...

1
in cell: Yy = — Pdx
Vil Jy,
atedge: 2(v); =tk + vk, and 2[Y] =y, — v
V f
parameters: b = Vi u’; = If]
|0 V| |0 V|

Step 1: implicit scheme of type non-linear advection-diffusion for the water height

hZ+1—hZ+%:Z ((hn+1un)f'N:f_dt(hn21> |:¢n+1:|::f> #[;:0
f

fEF,

Step 2: explicit upwind scheme with source term for the velocity

dt
1 1 1 k, 1 k, k
Wt = w53 (R (TN~ () )
FEF,
he! 1715 ke K
— +
= —dep= > [0 Mk
=
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Numerical scheme

Discrete energy

Under the non-restrictive CFL condition

hn+1 pr+l
uf NH + \/> / [¢n+1]kf 5n+1 < ml:ﬂg—l . hn:fl ) min (/k7 /kf)

the scheme admits the following energy dissipation law

8”“8k+ ZgnJrl ko« _ <pn+1 Pn+1) 6n+1Hk+hnan+1 (gBx + Py)
fe]l"k

with the discrete mechanical energy £ = & (hZ7 uZ) the discrete flux of energy G and the

,[pn+1 _ ’l/}n

discrete time derivative 8,_;"“1/) = 5
t
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Simulation with fixed buoy

Numerical results with fixed buoy
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Floating object

Buoy dynamics

Adding Newton’s second law of motions
Oth+V - (hu) =0
O (hu) + V- (hu® u) = —hV (g (h+ B) + p)

h<H (h—H)(p-P)=0 p=>P,

M(¢ = fMg+/ (p— Pa)dx
Qx

with R (x,t) = Ro (x) 4+ ¢ (t)

Energy conservation For any smooth solution the following energy balance law holds

Ot (/ de+E> :/ (pra)ather/ ho: (gB + P,) dx
Q, Qy Qx

M 1 h
where E = ?CZ + Mg¢ and £ = 5h|\uH2 +gh (B + 5) + hP,
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DISCRETIZATION OF THE BUOY DYNAMICS EQUATION

et = g Sk (e - P
keT

Using a Newmark scheme, the discrete energy law writes

Ertl_pn — _ (a _ %) I\/I’8 ; @ (5f+1)2 (é:nﬂ _ é—'n)Q

(6 =) | D (1l (e (™ = PE7) = o= 2) (61 = PH)))
keT

B—a (577)°

2 2

Energy law for the coupled system Let & = 3 = 1. Then the scheme admits the following

dissipation law

MEn® 4+ Mgcn.

1 .
with E" = EMgHZ +

o+t Z |klEk+E | < Z (1k|hport™ (eBi + Pi)) + Z (1kI (s = PI¥Y) 018

keT keT keT
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Numerical

result with buoy dynamics

Heignt (m)
T

0s
Space )

Flux (m?/e)

o8-

Surtace Pressure (Pa)
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Conclusion and perspectives

CONCLUSION

e Derivation of a shallow water type model for partially free surface flow
o Relaxed model introduced

o Numerically approaching the non-constant constraint
PERSPECTIVES

e Analysis: convergence when A — 0, non-conservative product hVp

e Validation: confrontation with real life data B2

o Modeling: more dynamics for buoy, more physical flow, air modeling, submerged object
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