Extreme dependence models and Environmental contours for safety assessment

Simulation et Optimisation pour les Energies Marines Renouvelables — Janvier 2018

Hélène Pineau², Marc Prevosto¹, **Nicolas Raillard**¹ January 11, 2018

1: IFREMER, Laboratoire Comportement des Structures en Mer — Marine Structures 2: Actimar, Brest

Context

Freme

- 100-year return value of response is needed for design purpose ;
- · Metocean parameters impact is fundamental;
- Multivariate setting : waves, wind, currents ;
- 100-year return level for each parameter is too conservative ;
- Structure models are too time-consuming to obtain link between metocean variables and responses ;
- Focus here on structure independent methods.

Outline of the talk

- 1. Case study : tensions in mooring lines
- 2. Methodology
- 3. Results
- 4. Conclusion Perspectives

Case study : tensions in mooring lines

Mooring lines tension

reme

• Data provided by Engie, for Gjoa semi-submersible plateform, 40km West offshore Norway, 100km North of Bergen ;

- Tensions in the mooring lines available during 20 storms, from 2011 to 2016 at 1Hz with many missing values ;
- Meta-model constructed to reproduce the observed data ;
- Retained parameters : H_s , W_s , C_s and their corresponding directions ;
- Reanalysis databases used to obtain synthetic response of the structure.

Mooring lines tension

Methodology

Extremal Values Modelling : Methodology

Extremal Values Modelling : Methodology

- Hourly mooring line tension, from 1992/10 to 2015/12;
- POT modelling :
 - Extraction of storms : events above the 97.5% quantile, separated with at least 1 day ;
 - GPD hypothesis for the 99% quantile excess, parameters estimated with ML ;
 - Computation of the 100-years return level.
- Considered as the Golden Standard to reproduce ;
- Unavailable when designing new structures.

	Threshold	Nb. Obs.	Scale	Shape	100yr r.l.
Tension	2475.76	236	190.01	0.02	3761.36
Hs	7.03	194	1.75	-0.20	13.21
Ws	21.33	305	3.09	-0.18	33.41
Cs	0.88	292	0.20	-0.31	1.46

 Table 1: Parameters of the fitted models and estimated return levels
 6/16

Methodology

Extremal Values Modelling : dependency

Dependence modelling : basic approaches

- Independence : product of cdf;
- Perfect dependence : 100-years RL occurs in all variables simultaneously ;

Dependence modelling : basic approaches

- Independence : product of cdf;
- Perfect dependence : 100-years RL occurs in all variables simultaneously ;

Conditional models

- Standard method (e.g. DNV-GL, IEC-61400-3):
 - Weibull model for $W_{\rm s}$;
 - Weibull model for H_s given W_s ;
 - Log-normal distribution of T_p given H_s ;
- · Linear model on the parameters of the distribution ;
- Only 2D ;
- $\cdot\,$ No specific model for extreme, the bulk of the distribution is used.

- Classical approach in Structural engineering ;
- X (physical space) \hookrightarrow Z (normal space);
- Estimation : find Γ s.t.

$$\mathbb{P}(G_{\Gamma} > \mathbf{u}) = \mathbb{P}(Z_1 >= u_1, Z_2 >= u_2, Z_3 >= u_3)$$

where $G_{\Gamma} \sim \mathcal{N}(0, \Gamma)$

Extreme value Dependence function

- Thresholds excess X (physical space) \hookrightarrow Y (Frechet space) ;
- Probabilistic results on the joint p.d.f. of Y ;
- A.k.a copula model ;
- Parametric models can be used ;
- Estimation : censored likelihood ;
- Simulation is straightforward.

Conditional Model (Heffernan & Tawn)

- Thresholds excess X (physical space) \hookrightarrow Z (Gumbel space)
- Non-linear regression model fitted using ML and assuming :

$$Z_{-i}|Z_i = a_{-i|i}Z_i + Z_i^{b_{-i|i}}\epsilon_{-i|i}$$
, for $Z_i > \nu$ and $Z_i > Z_{-i}$

where:

- Z_{-i} : all variables excluding Z_i ;
- $\cdot \, a_{-i|i}$ and $b_{-i|i}$: parameters of the fitted pair-wise regression model ;
- + ν : dependency threshold ;
- $\boldsymbol{\epsilon}_{-i|i} \stackrel{i.i.d}{\sim} \mathcal{N}(\boldsymbol{\mu}_{-i|i}, \boldsymbol{\sigma}_{-i|i}).$
- Simulation :
 - \cdot Draw $\epsilon_{-i|i}$ (empirical, kernel smoothing, Gaussian...) ;
 - Rejection step to respect the empirical ratio of $Z_i > Z_{-i}$;
 - Transform back to original scale $Y_i = \exp(-F_i(Z_i))$.

Methodology

Environmental contours

Environmental contours

- Environmental contours : curves along which N-year levels of response will lie ;
- Contours are independent of the structure ;
- Hypothesis :

ffremer

- the ruin of the structure occurs in a single point in the space ;
- The limit state is well approximated by an hyperplane.

Figure 1: Example of Hs-Tp contours and extreme wave crest (eta) as response (source: Wintershein-et-al 1993)

Estimating environmental contours

Huseby method

ffremer

- Direct Monte Carlo simulations;
- Works in the original space ;
- For any direction θ, one can estimate the hyperplane with p-probability of being exceeded;
- The contour is the curve which tangents all these straight lines ;

Figure 2: Huseby contour method

Results

Method	Tension	Rel. Err.	Hs	Ws	Cs
Meta model	3761.36	NA	NA	NA	NA
Independence Perfect dependence	3536.22 4152.32	-5.99 10.39	12.93 13.21	25.87 33.41	1.10 1.46
Nataf	3911.71	4.00	13.02	32.11	1.28
Logistic model	3994.31	6.19	12.98	32.37	1.40
Conditional extremes	3627.88	-3.55	11.97	31.00	1.27

 Table 2: Comparison of the methods for the estimation of 100-years return level.

Results

Ifremer

Figure 3: 3D contour and design points (red).

Conclusion — Perspectives

Conclusion — perspectives

- Comparison of multivariate methods to obtain extremal environmental conditions ;
- Both Parametric copula and Heffernan&Tawn performs well in 2D & 3D ;
- Procedure leading to realistic and less conservative design point ;

Future works perspectives :

- Higher dimensions and directional aspect ;
- Non-exchangeable model for copula ;
- Contours for coupled intensity variable and covariate (e.g. H_s and T_p);

